A note on the extended dispersionless Toda hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 35-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive dispersionless Hirota equations for the extended dispersionless Toda hierarchy. We show that the dispersionless Hirota equations are just a direct consequence of the genus-zero topological recurrence relation for the topological $\mathbb CP^1$ model. Using the dispersionless Hirota equations, we compute the two-point functions and express the result in terms of Catalan numbers.
Keywords: extended dispersionless Toda hierarchy, dispersionless Hirota equation, Catalan number, topological field theory.
@article{TMF_2013_175_1_a2,
     author = {Niann-Chern Lee and Ming-Hsien Tu},
     title = {A~note on the~extended dispersionless {Toda~hierarchy}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {35--49},
     year = {2013},
     volume = {175},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a2/}
}
TY  - JOUR
AU  - Niann-Chern Lee
AU  - Ming-Hsien Tu
TI  - A note on the extended dispersionless Toda hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 35
EP  - 49
VL  - 175
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a2/
LA  - ru
ID  - TMF_2013_175_1_a2
ER  - 
%0 Journal Article
%A Niann-Chern Lee
%A Ming-Hsien Tu
%T A note on the extended dispersionless Toda hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 35-49
%V 175
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a2/
%G ru
%F TMF_2013_175_1_a2
Niann-Chern Lee; Ming-Hsien Tu. A note on the extended dispersionless Toda hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 35-49. http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a2/

[1] Y. Kodama, V. Pierce, Commun. Math. Phys., 292:2 (2009), 529–568, arXiv: 0811.0351 | DOI | MR | Zbl

[2] R. P. Stanley, Enumerative Combinatorics, v. 1, 2, Cambridge Studies in Advanced Mathematics, 49, Cambridge Univ. Press, Cambridge, 1999 | MR | MR | Zbl

[3] D. M. Jackson, Trans. Amer. Math. Soc., 344:2 (1994), 755–772 | MR | Zbl

[4] J. H. Kwak, J. Lee, Kyungpook Math. J., 33:1 (1993), 115–125 | MR | Zbl

[5] T. Eguchi, S. K. Yang, Modern Phys. Lett. A, 9:31 (1994), 2893–2902 | DOI | MR | Zbl

[6] T. Eguchi, K. Hori, S. K. Yang, Internat. J. Modern Phys. A, 10:29 (1995), 4203–4224 | DOI | MR | Zbl

[7] B. Dubrovin, Y. Zhang, Normal forms of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, arXiv: math/0108160

[8] B. Dubrovin, Y. Zhang, Commun. Math. Phys., 250:1 (2004), 161–193, arXiv: math/0308152 | DOI | MR | Zbl

[9] Y. Zhang, J. Geom. Phys., 40:3–4 (2002), 215–232 | DOI | MR | Zbl

[10] G. Carlet, B. A. Dubrovin, Y. J. Zhang, Mosc. Math. J., 4 (2004), 313–332 | MR | Zbl

[11] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, E. Zaslow, Mirror symmetry, Clay Mathematics Monographs, 1, AMS, Providence, RI, 2003 | MR | Zbl

[12] K. Takasaki, T. Takebe, Rev. Math. Phys., 7:5 (1995), 743–808 | DOI | MR | Zbl

[13] H. Kanno, Y. Ohta, Nucl. Phys. B, 442:1–2 (1995), 179–201, arXiv: hep-th/9502029 | DOI | MR | Zbl

[14] E. Witten, Nucl. Phys. B, 340:2–3 (1990), 281–332 | DOI | MR

[15] S. Aoyama, Y. Kodama, Commun. Math. Phys., 182:1 (1996), 185–219, arXiv: hep-th/9505122 | DOI | MR | Zbl

[16] R. Dijkgraaf, “Intersection theory, integrable hierarchies and topological field theory”, New Symmetry Principles in Quantum Field Theory (Cargése, July 16–27, 1991), NATO Advanced Science Institutes Series B: Physics, 295, eds. J. Fröhlich, G. 't Hooft, A. Jaffe, G. Mack, P. Mitter, R. Stora, Plenum, New York, 1993, 95–158 | MR | Zbl

[17] B. A. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Group (Montecatini Terme, Italy, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[18] M. Kontsevich, Commun. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl

[19] I. Krichever, Commun. Math. Phys., 143:2 (1992), 415–429 | DOI | MR | Zbl

[20] E. Witten, “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Differential Geometry, Proceedings of the Conference on Geometry and Topology, Supplement to the Journal of Differential Geometry. 1 (Harvard University, Cambridge, MA, USA, April 27–29, 1990), eds. C.-C. Hsiung, S.-T. Yau, H. B. Lawson jun., Lehigh Univ., Bethlehem, PA, 1991, 243–310 | MR | Zbl

[21] T. E. Milanov, Duke Math. J., 138:1 (2007), 161–178 | DOI | MR | Zbl

[22] C. Li, J. He, K. Wu, Y. Cheng, J. Math. Phys., 51:4 (2010), 043514, 32 pp. | DOI | MR | Zbl

[23] K. Takasaki, J. Phys. A, 43:43 (2010), 434032, 15 pp., arXiv: 1002.4688 | DOI | MR | Zbl