@article{TMF_2013_175_1_a2,
author = {Niann-Chern Lee and Ming-Hsien Tu},
title = {A~note on the~extended dispersionless {Toda~hierarchy}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {35--49},
year = {2013},
volume = {175},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a2/}
}
Niann-Chern Lee; Ming-Hsien Tu. A note on the extended dispersionless Toda hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 35-49. http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a2/
[1] Y. Kodama, V. Pierce, Commun. Math. Phys., 292:2 (2009), 529–568, arXiv: 0811.0351 | DOI | MR | Zbl
[2] R. P. Stanley, Enumerative Combinatorics, v. 1, 2, Cambridge Studies in Advanced Mathematics, 49, Cambridge Univ. Press, Cambridge, 1999 | MR | MR | Zbl
[3] D. M. Jackson, Trans. Amer. Math. Soc., 344:2 (1994), 755–772 | MR | Zbl
[4] J. H. Kwak, J. Lee, Kyungpook Math. J., 33:1 (1993), 115–125 | MR | Zbl
[5] T. Eguchi, S. K. Yang, Modern Phys. Lett. A, 9:31 (1994), 2893–2902 | DOI | MR | Zbl
[6] T. Eguchi, K. Hori, S. K. Yang, Internat. J. Modern Phys. A, 10:29 (1995), 4203–4224 | DOI | MR | Zbl
[7] B. Dubrovin, Y. Zhang, Normal forms of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, arXiv: math/0108160
[8] B. Dubrovin, Y. Zhang, Commun. Math. Phys., 250:1 (2004), 161–193, arXiv: math/0308152 | DOI | MR | Zbl
[9] Y. Zhang, J. Geom. Phys., 40:3–4 (2002), 215–232 | DOI | MR | Zbl
[10] G. Carlet, B. A. Dubrovin, Y. J. Zhang, Mosc. Math. J., 4 (2004), 313–332 | MR | Zbl
[11] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, E. Zaslow, Mirror symmetry, Clay Mathematics Monographs, 1, AMS, Providence, RI, 2003 | MR | Zbl
[12] K. Takasaki, T. Takebe, Rev. Math. Phys., 7:5 (1995), 743–808 | DOI | MR | Zbl
[13] H. Kanno, Y. Ohta, Nucl. Phys. B, 442:1–2 (1995), 179–201, arXiv: hep-th/9502029 | DOI | MR | Zbl
[14] E. Witten, Nucl. Phys. B, 340:2–3 (1990), 281–332 | DOI | MR
[15] S. Aoyama, Y. Kodama, Commun. Math. Phys., 182:1 (1996), 185–219, arXiv: hep-th/9505122 | DOI | MR | Zbl
[16] R. Dijkgraaf, “Intersection theory, integrable hierarchies and topological field theory”, New Symmetry Principles in Quantum Field Theory (Cargése, July 16–27, 1991), NATO Advanced Science Institutes Series B: Physics, 295, eds. J. Fröhlich, G. 't Hooft, A. Jaffe, G. Mack, P. Mitter, R. Stora, Plenum, New York, 1993, 95–158 | MR | Zbl
[17] B. A. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Group (Montecatini Terme, Italy, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl
[18] M. Kontsevich, Commun. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl
[19] I. Krichever, Commun. Math. Phys., 143:2 (1992), 415–429 | DOI | MR | Zbl
[20] E. Witten, “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Differential Geometry, Proceedings of the Conference on Geometry and Topology, Supplement to the Journal of Differential Geometry. 1 (Harvard University, Cambridge, MA, USA, April 27–29, 1990), eds. C.-C. Hsiung, S.-T. Yau, H. B. Lawson jun., Lehigh Univ., Bethlehem, PA, 1991, 243–310 | MR | Zbl
[21] T. E. Milanov, Duke Math. J., 138:1 (2007), 161–178 | DOI | MR | Zbl
[22] C. Li, J. He, K. Wu, Y. Cheng, J. Math. Phys., 51:4 (2010), 043514, 32 pp. | DOI | MR | Zbl
[23] K. Takasaki, J. Phys. A, 43:43 (2010), 434032, 15 pp., arXiv: 1002.4688 | DOI | MR | Zbl