Pauli theorem in the description of $n$-dimensional spinors in the Clifford algebra formalism
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 11-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a generalized Pauli theorem and its possible applications for describing $n$-dimensional (Dirac, Weyl, Majorana, and Majorana–Weyl) spinors in the Clifford algebra formalism. We give the explicit form of elements that realize generalizations of Dirac, charge, and Majorana conjugations in the case of arbitrary space dimensions and signatures, using the notion of the Clifford algebra additional signature to describe conjugations. We show that the additional signature can take only certain values despite its dependence on the matrix representation.
Keywords: Pauli theorem, Clifford algebra, Clifford algebra additional signature.
Mots-clés : Dirac conjugation, charge conjugation, Majorana conjugation, Majorana–Weyl spinor
@article{TMF_2013_175_1_a1,
     author = {D. S. Shirokov},
     title = {Pauli theorem in the~description of $n$-dimensional spinors in {the~Clifford} algebra~formalism},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {11--34},
     year = {2013},
     volume = {175},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a1/}
}
TY  - JOUR
AU  - D. S. Shirokov
TI  - Pauli theorem in the description of $n$-dimensional spinors in the Clifford algebra formalism
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 11
EP  - 34
VL  - 175
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a1/
LA  - ru
ID  - TMF_2013_175_1_a1
ER  - 
%0 Journal Article
%A D. S. Shirokov
%T Pauli theorem in the description of $n$-dimensional spinors in the Clifford algebra formalism
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 11-34
%V 175
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a1/
%G ru
%F TMF_2013_175_1_a1
D. S. Shirokov. Pauli theorem in the description of $n$-dimensional spinors in the Clifford algebra formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 11-34. http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a1/

[1] W. Pauli, Ann. Inst. H. Poincaré, 6:2 (1936), 109–136 | MR | Zbl

[2] N. N. Bogolyubov, D. V. Shirkov, Kvantovye polya, Nauka, M., 1980 | MR | Zbl

[3] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR | MR | Zbl

[4] M. A. Naimark, A. I. Stern, Theory of Group Representations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 246, Springer, Berlin, 1982 | DOI | MR | Zbl

[5] P. C. West, “Supergravity, brane dynamics and string duality”, Duality and Supersymmetric Theories (Cambridge, England, April 7–18, 1997), eds. D. I. Olive, P. C. West, Cambridge Univ. Press, Cambridge, 1999, 147–266, arXiv: hep-th/9811101 | MR | Zbl

[6] Y. Tanii, Introduction to supergravities in diverse dimensions, arXiv: hep-th/9802138 | MR

[7] Dzh. Sherk, “Rasshirennaya supersimmetriya i teoriya rasshirennoi supergravitatsii”, Geometricheskie idei v fizike, Sb. statei, ed. Yu. I. Manin, Mir, M., 1983, 203–239 | MR

[8] T. Kugo, P. Townsend, Nucl. Phys. B, 221:2 (1983), 357–380 | DOI | MR

[9] F. Gliozzi, J. Sherk, D. Olive, Nucl. Phys. B, 122:2 (1977), 253–290 | DOI | MR

[10] B. DeWitt, Supermanifolds, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[11] I. Ya. Arefeva, I. V. Volovich, UFN, 146:4 (1985), 655–681 | DOI | MR

[12] V. S. Vladimirov, I. V. Volovich, TMF, 59:1 (1984), 3–27 | DOI | MR | Zbl

[13] V. S. Vladimirov, I. V. Volovich, TMF, 60:2 (1984), 169–198 | DOI | MR | Zbl

[14] J. Strathdee, Internat. J. Modern Phys. A, 2:1 (1987), 273–300 | DOI | MR | Zbl

[15] P. G. O. Freund, Introduction to Supersymmetry, Springer, Berlin, 1986 | MR

[16] P. Uest, Vvedenie v supersimmetriyu i supergravitatsiyu, Mir, M., 1989 | MR | MR | Zbl

[17] A. V. Galazhinskii, Vvedenie v supersimmetriyu, Izd. Tomsk. politekhn. un-ta, Tomsk, 2008

[18] M. Rausch de Traubenberg, “Clifford Algebras in Physics”, Lectures of the 7th International Conference on Clifford Algebras and their Applications – ICCA-7 (Toulouse, France, May 19–29, 2005), Institut de Mathématiques de Toulouse, Toulouse, 2005, arXiv: hep-th/0506011

[19] F. Quevedo, Cambridge lectures on supersymmetry and extra dimensions, arXiv: 1011.1491

[20] D. S. Shirokov, Dokl. RAN, 440:5 (2011), 607–610 | DOI | MR | Zbl

[21] N. G. Marchuk, D. S. Shirokov, Local generalized Pauli's theorem, arXiv: 1201.4985

[22] W. K. Clifford, Amer. J. Math., 1:4 (1878), 350–358 | DOI | MR | Zbl

[23] H. Grassmann, Die Lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, Verlag von Otto Wigand, Leipzig, 1844

[24] W. R. Hamilton, Philos. Mag., 25 (1844), 489–495

[25] C. Chevalley, Collected Works, v. 2, The Algebraic Theory of Spinors and Clifford Algebras, Springer, Berlin, 1997 | MR | Zbl

[26] M. Riesz, “Sur certaines notions fondamentales en théorie quantique relativiste”, C. R. Dixième Congrès Math. Scandinaves (Gjellerups Forlag, Copenhagen, July 1946), Jul. Gjellerups Forlag, Copenhagen, 1947, 123–148 ; “L'équation de Dirac en relativité générale”, Collected Papers, eds. L. Gårding, L. Hörmander, Springer, Berlin, 1988, 814–832 | MR | MR | Zbl

[27] P. A. M. Dirac, Proc. Roy. Soc. London A, 117:778 (1928), 610–624 | DOI | Zbl

[28] D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus. A Unified Language for Mathematical Physics, Reidel, Dordrecht, 1984 | MR | Zbl

[29] N. G. Marchuk, Uravneniya teorii polya i algebry Klifforda, RKhD, Izhevsk, 2009

[30] P. Lounesto, Clifford Algebras and Spinors, London Mathematical Society Lecture Note Series, 286, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[31] G. Juvet, Comment. Math. Helv., 2:1 (1930), 225–235 | DOI | MR | Zbl

[32] F. Sauter, Z. Phys., 63:11–12 (1930), 803–814 | DOI | Zbl

[33] I. M. Benn, R. W. Tucker, An Introduction to Spinors and Geometry with Applications in Physics, Adam Hilger, Bristol, 1987 | MR | Zbl

[34] P. K. Rashevskii, UMN, 10:2(64) (1955), 3–110 | MR | Zbl

[35] Yu. B. Rumer, Spinornyi analiz, ONTI, M.–L., 1936

[36] N. G. Marchuk, D. S. Shirokov, Adv. Appl. Clifford Algebr., 18:2 (2008), 237–254 | DOI | MR | Zbl

[37] D. S. Shirokov, Concepts of trace, determinant and inverse of Clifford algebra elements, arXiv: 1108.5447