Pauli theorem in the~description of $n$-dimensional spinors in the~Clifford algebra~formalism
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 11-34
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss a generalized Pauli theorem and its possible applications for describing $n$-dimensional (Dirac, Weyl, Majorana, and Majorana–Weyl) spinors in the Clifford algebra formalism. We give the explicit form of elements that realize generalizations of Dirac, charge, and Majorana conjugations in the case of arbitrary space dimensions and signatures, using the notion of the Clifford algebra additional signature to describe conjugations. We show that the additional signature can take only certain values despite its dependence on the matrix representation.
Keywords:
Pauli theorem, Clifford algebra, Clifford algebra additional signature.
Mots-clés : Dirac conjugation, charge conjugation, Majorana conjugation, Majorana–Weyl spinor
Mots-clés : Dirac conjugation, charge conjugation, Majorana conjugation, Majorana–Weyl spinor
@article{TMF_2013_175_1_a1,
author = {D. S. Shirokov},
title = {Pauli theorem in the~description of $n$-dimensional spinors in {the~Clifford} algebra~formalism},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {11--34},
publisher = {mathdoc},
volume = {175},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a1/}
}
TY - JOUR AU - D. S. Shirokov TI - Pauli theorem in the~description of $n$-dimensional spinors in the~Clifford algebra~formalism JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 11 EP - 34 VL - 175 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a1/ LA - ru ID - TMF_2013_175_1_a1 ER -
D. S. Shirokov. Pauli theorem in the~description of $n$-dimensional spinors in the~Clifford algebra~formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 11-34. http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a1/