Mots-clés : Dirac conjugation, charge conjugation, Majorana conjugation, Majorana–Weyl spinor
@article{TMF_2013_175_1_a1,
author = {D. S. Shirokov},
title = {Pauli theorem in the~description of $n$-dimensional spinors in {the~Clifford} algebra~formalism},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {11--34},
year = {2013},
volume = {175},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a1/}
}
TY - JOUR AU - D. S. Shirokov TI - Pauli theorem in the description of $n$-dimensional spinors in the Clifford algebra formalism JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 11 EP - 34 VL - 175 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a1/ LA - ru ID - TMF_2013_175_1_a1 ER -
D. S. Shirokov. Pauli theorem in the description of $n$-dimensional spinors in the Clifford algebra formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 11-34. http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a1/
[1] W. Pauli, Ann. Inst. H. Poincaré, 6:2 (1936), 109–136 | MR | Zbl
[2] N. N. Bogolyubov, D. V. Shirkov, Kvantovye polya, Nauka, M., 1980 | MR | Zbl
[3] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR | MR | Zbl
[4] M. A. Naimark, A. I. Stern, Theory of Group Representations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 246, Springer, Berlin, 1982 | DOI | MR | Zbl
[5] P. C. West, “Supergravity, brane dynamics and string duality”, Duality and Supersymmetric Theories (Cambridge, England, April 7–18, 1997), eds. D. I. Olive, P. C. West, Cambridge Univ. Press, Cambridge, 1999, 147–266, arXiv: hep-th/9811101 | MR | Zbl
[6] Y. Tanii, Introduction to supergravities in diverse dimensions, arXiv: hep-th/9802138 | MR
[7] Dzh. Sherk, “Rasshirennaya supersimmetriya i teoriya rasshirennoi supergravitatsii”, Geometricheskie idei v fizike, Sb. statei, ed. Yu. I. Manin, Mir, M., 1983, 203–239 | MR
[8] T. Kugo, P. Townsend, Nucl. Phys. B, 221:2 (1983), 357–380 | DOI | MR
[9] F. Gliozzi, J. Sherk, D. Olive, Nucl. Phys. B, 122:2 (1977), 253–290 | DOI | MR
[10] B. DeWitt, Supermanifolds, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[11] I. Ya. Arefeva, I. V. Volovich, UFN, 146:4 (1985), 655–681 | DOI | MR
[12] V. S. Vladimirov, I. V. Volovich, TMF, 59:1 (1984), 3–27 | DOI | MR | Zbl
[13] V. S. Vladimirov, I. V. Volovich, TMF, 60:2 (1984), 169–198 | DOI | MR | Zbl
[14] J. Strathdee, Internat. J. Modern Phys. A, 2:1 (1987), 273–300 | DOI | MR | Zbl
[15] P. G. O. Freund, Introduction to Supersymmetry, Springer, Berlin, 1986 | MR
[16] P. Uest, Vvedenie v supersimmetriyu i supergravitatsiyu, Mir, M., 1989 | MR | MR | Zbl
[17] A. V. Galazhinskii, Vvedenie v supersimmetriyu, Izd. Tomsk. politekhn. un-ta, Tomsk, 2008
[18] M. Rausch de Traubenberg, “Clifford Algebras in Physics”, Lectures of the 7th International Conference on Clifford Algebras and their Applications – ICCA-7 (Toulouse, France, May 19–29, 2005), Institut de Mathématiques de Toulouse, Toulouse, 2005, arXiv: hep-th/0506011
[19] F. Quevedo, Cambridge lectures on supersymmetry and extra dimensions, arXiv: 1011.1491
[20] D. S. Shirokov, Dokl. RAN, 440:5 (2011), 607–610 | DOI | MR | Zbl
[21] N. G. Marchuk, D. S. Shirokov, Local generalized Pauli's theorem, arXiv: 1201.4985
[22] W. K. Clifford, Amer. J. Math., 1:4 (1878), 350–358 | DOI | MR | Zbl
[23] H. Grassmann, Die Lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, Verlag von Otto Wigand, Leipzig, 1844
[24] W. R. Hamilton, Philos. Mag., 25 (1844), 489–495
[25] C. Chevalley, Collected Works, v. 2, The Algebraic Theory of Spinors and Clifford Algebras, Springer, Berlin, 1997 | MR | Zbl
[26] M. Riesz, “Sur certaines notions fondamentales en théorie quantique relativiste”, C. R. Dixième Congrès Math. Scandinaves (Gjellerups Forlag, Copenhagen, July 1946), Jul. Gjellerups Forlag, Copenhagen, 1947, 123–148 ; “L'équation de Dirac en relativité générale”, Collected Papers, eds. L. Gårding, L. Hörmander, Springer, Berlin, 1988, 814–832 | MR | MR | Zbl
[27] P. A. M. Dirac, Proc. Roy. Soc. London A, 117:778 (1928), 610–624 | DOI | Zbl
[28] D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus. A Unified Language for Mathematical Physics, Reidel, Dordrecht, 1984 | MR | Zbl
[29] N. G. Marchuk, Uravneniya teorii polya i algebry Klifforda, RKhD, Izhevsk, 2009
[30] P. Lounesto, Clifford Algebras and Spinors, London Mathematical Society Lecture Note Series, 286, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[31] G. Juvet, Comment. Math. Helv., 2:1 (1930), 225–235 | DOI | MR | Zbl
[32] F. Sauter, Z. Phys., 63:11–12 (1930), 803–814 | DOI | Zbl
[33] I. M. Benn, R. W. Tucker, An Introduction to Spinors and Geometry with Applications in Physics, Adam Hilger, Bristol, 1987 | MR | Zbl
[34] P. K. Rashevskii, UMN, 10:2(64) (1955), 3–110 | MR | Zbl
[35] Yu. B. Rumer, Spinornyi analiz, ONTI, M.–L., 1936
[36] N. G. Marchuk, D. S. Shirokov, Adv. Appl. Clifford Algebr., 18:2 (2008), 237–254 | DOI | MR | Zbl
[37] D. S. Shirokov, Concepts of trace, determinant and inverse of Clifford algebra elements, arXiv: 1108.5447