Coexistence of superconductivity and antiferromagnetism in heavy-fermion intermetallides
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 3, pp. 484-503 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the two-time retarded Green's function, we study the conditions for realizing the phase of the superconductivity and antiferromagnetism coexistence in the framework of the effective Hamiltonian for the periodic Anderson model. Such a phase was experimentally observed in rare-earth intermetallides with heavy fermions under an external pressure. In the chosen model, the Cooper instability is induced in the presence of long-range antiferromagnetic ordering as a result of the combined effect of a superexchange interaction in the subsystem of localized electrons and the hybridization between two groups of electrons. Applying an external pressure induces an increase in the energy of the localized level accompanied by an abrupt destruction of the long-range antiferromagnetic ordering in a certain region of the phase diagram. The superconductivity order parameter has a maximum value at the destruction point. We show that the decrease in the antiferromagnetic-sublattice magnetization with increasing pressure leads to a significant increase in the masses of Fermi quasiparticles, and the sign of the current carriers reverses at the critical point. The obtained results qualitatively agree well with the experimental data for the heavy-fermion intermetallide CeRhIn$_5$.
Keywords: periodic Anderson model, coexistence of superconductivity and antiferromagnetism, superexchange interaction, heavy fermion.
@article{TMF_2013_174_3_a7,
     author = {V. V. Val'kov and A. O. Zlotnikov},
     title = {Coexistence of superconductivity and antiferromagnetism in heavy-fermion intermetallides},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {484--503},
     year = {2013},
     volume = {174},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a7/}
}
TY  - JOUR
AU  - V. V. Val'kov
AU  - A. O. Zlotnikov
TI  - Coexistence of superconductivity and antiferromagnetism in heavy-fermion intermetallides
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 484
EP  - 503
VL  - 174
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a7/
LA  - ru
ID  - TMF_2013_174_3_a7
ER  - 
%0 Journal Article
%A V. V. Val'kov
%A A. O. Zlotnikov
%T Coexistence of superconductivity and antiferromagnetism in heavy-fermion intermetallides
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 484-503
%V 174
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a7/
%G ru
%F TMF_2013_174_3_a7
V. V. Val'kov; A. O. Zlotnikov. Coexistence of superconductivity and antiferromagnetism in heavy-fermion intermetallides. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 3, pp. 484-503. http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a7/

[1] P. W. Anderson, Science, 235:4793 (1987), 1196–1198 | DOI

[2] N. M. Plakida, High-Temperature Cuprate Superconductors. Experiment, Theory, and Applications, Springer Series in Solid-State Sciences, 166, Springer, Heidelberg, Berlin, 2010 | DOI

[3] N. E. Alekseevskii, D. I. Khomskii, UFN, 147:4 (1985), 767–779 | DOI

[4] G. R. Stewart, Rev. Mod. Phys., 56:4 (1987), 755–787 | DOI

[5] D. M. Newns, H. Read, Adv. Phys., 36:6 (1987), 799–849 | DOI

[6] V. V. Valkov, S. G. Ovchinnikov, Kvazichastitsy v silno korrelirovannykh sistemakh, Izd-vo SO RAN, Novosibirsk, 2001 | MR

[7] K. Miyake, S. Schmitt-Rink, C. M. Varma, Phys. Rev. B, 34:9 (1986), 6554–6556 | DOI

[8] R. O. Zaitsev, V. A. Ivanov, FTT, 29 (1987), 2554–2556

[9] Yu. A. Izyumov, UFN, 161:11 (1991), 1–46 | DOI

[10] S. V. Vonsovskii, M. S. Svirskii, ZhETF, 46:5 (1964), 1619–1631

[11] A. I. Buzdin, L. N. Bulaevskii, UFN, 149:1 (1986), 45–67 | DOI

[12] S. M. Hayden, L. Taillefer, C. Vettier, J. Flouquet, Phys. Rev. B, 46:13 (1992), 8675–8678 | DOI

[13] R. Caspary, P. Hellmann, M. Keller, G. Sparn, C. Wassiew, R. Köhler, C. Geibel, C. Schank, F. Steglich, N. E. Phillips, Phys. Rev. Lett., 71:13 (1993), 2146–2149 | DOI

[14] G. Zwicknagl, A. N. Yaresko, P. Fulde, Phys. Rev. B, 65:8 (2002), 081103, 4 pp. | DOI

[15] T. Park, J. D. Thompson, New J. Phys., 11 (2009), 055062, 17 pp., arXiv: 0908.2404 | DOI

[16] T. Mito, S. Kawasaki, Y. Kawasaki, G.-Q. Zheng, Y. Kitaoka, D. Aoki, Y. Haga, Y. Ōnuki, Phys. Rev. Lett., 90:7 (2003), 077004, 4 pp., arXiv: cond-mat/0211576 | DOI

[17] Yu. A. Izyumov, N. M. Plakida, Yu. N. Skryabin, UFN, 159:4 (1989), 621–663 | DOI

[18] H. Mukuda, Y. Yamaguchi, S. Shimizu, Y. Kitaoka, P. Shirage, A. Iyo, J. Phys. Soc. Jpn., 77:12 (2008), 124706, 7 pp., arXiv: 0810.0880 | DOI

[19] S. Shimizu, S. Tabata, H. Mukuda, Y. Kitaoka, P. M. Shirage, H. Kito, A. Iyo, Phys. Soc. Jpn., 80 (2011), 043706, 4 pp., arXiv: 1102.5282 | DOI

[20] A. N. Lavrov, L. P. Kozeeva, M. R. Trunin, V. N. Zverev, Phys. Rev. B, 79:21 (2009), 214523, 6 pp. | DOI

[21] M. Meipl, E. Fisher (red.), Sverkhprovodimost v troinykh soedineniyakh, Mir, M., 1985

[22] P. D. Sacramento, J. Phys., 15:36 (2003), 6285–6300 | DOI

[23] J. V. Alvarez, Phys. Rev. Lett., 98:12 (2007), 126406 | DOI

[24] C. M. Varma, W. Webber, L. J. Randall, Phys. Rev. B, 33:2 (1986), 1015–1019 | DOI

[25] H. Tsunetsugu, M. Sigrist, K. Ueda, Rev. Mod. Phys., 69:3 (1997), 809–863 | DOI

[26] V. A. Moskalenko, TMF, 116:3 (1998), 456–473 | DOI | DOI | Zbl

[27] V. A. Moskalenko, TMF, 110:2 (1997), 308–322 | DOI | DOI | Zbl

[28] V. V. Valkov, D. M. Dzebisashvili, TMF, 157:2 (2008), 235–249 | DOI | DOI | MR | Zbl

[29] V. V. Valkov, A. O. Zlotnikov, Izv. RAN. Ser. fiz., 75:5 (2011), 682–684 | DOI | Zbl

[30] N. N. Bogolyubov, Sobranie nauchnykh trudov v dvenadtsati tomakh. Ctatisticheskaya mekhanika, v. 6, Ravnovesnaya statisticheskaya mekhanika. 1945–1986, Nauka, M., 2006 | MR | Zbl

[31] D. N. Zubarev, UFN, 71:1 (1960), 71–116 | DOI | MR

[32] N. M. Plakida, TMF, 5:1 (1970), 147–153 | DOI

[33] N. M. Plakida, TMF, 154:1 (2008), 129–146 | DOI | MR | Zbl

[34] R. Zwanzig, Phys. Rev., 124:4 (1961), 983–992 | DOI | Zbl

[35] H. Mori, Prog. Theor. Phys., 33:3 (1965), 423–455 | DOI | Zbl

[36] R. O. Zaitsev, ZhETF, 68:1 (1975), 207–215

[37] R. O. Zaitsev, ZhETF, 70:3 (1976), 1100–1111

[38] T. Park, E. D. Bauer, J. D. Thompson, Phys. Rev. Lett., 101:17 (2008), 177002, arXiv: 0806.3308 | DOI

[39] V. V. Valkov, D. M. Dzebisashvili, TMF, 162:1 (2010), 125–149 | DOI | DOI | MR | Zbl

[40] V. V. Valkov, D. M. Dzebisashvili, ZhETF, 137:2 (2010), 341–360

[41] H. Hegger, C. Petrovich, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, J. D. Thompson, Phys. Rev. Lett., 84:21 (2000), 4986–4989 | DOI

[42] H. Shishido, R. Settai, H. Harima, Y. Ōnuki, J. Phys. Soc. Jap., 74:4 (2005), 1103–1106 | DOI

[43] G. Knebel, D. Aoki, J.-P. Brison, J. Flouquet, J. Phys. Soc. Jap., 77:11 (2008), 114704, 14 pp., arXiv: 0808.3687 | DOI