Keywords: nonequilibrium dynamics, gauge field.
@article{TMF_2013_174_3_a6,
author = {M. G. Vasin},
title = {Gauge theory of the~liquid{\textendash}glass transition in static and dynamical approaches},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {467--483},
year = {2013},
volume = {174},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a6/}
}
M. G. Vasin. Gauge theory of the liquid–glass transition in static and dynamical approaches. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 3, pp. 467-483. http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a6/
[1] N. Rivier, D. M. Duffy, J. Physique, 43:2 (1982), 293–306 | DOI | MR
[2] D. R. Nelson, Phys. Rev. B, 28:10 (1983), 5515–5535 | DOI | MR
[3] N. Rivier, Revista Brasileira de Flsica, 15:4 (1985), 311–378
[4] I. E. Dzyaloshinskii, G. E. Volovik, J. Physique, 39:6 (1978), 693–700 | DOI
[5] J. A. Hertz, Phys. Rev. B, 18:9 (1978), 4875–4885 | DOI
[6] D. Kivelson, G. Tarjus, Phyl. Mag. B, 77:2 (1998), 245–256 | DOI
[7] G. Tarjus, S. A. Kivelson, Z. Nussinov, P. Viot, J. Phys., 17:50 (2005), R1143–R1182 | DOI
[8] D. Chowdhury, Spin Glasses and Other Frustrated Systems, World Sci., Singapore, 1986
[9] G. Toulouse, Commun. Phys., 2 (1977), 115–119
[10] I. Kanazawa, J. Non-Cryst. Solids, 293–295:1–2 (2001), 615–619 | DOI
[11] Z. Nussinov, Phys. Rev. B, 69:1 (2004), 014208, 25 pp., arXiv: cond-mat/0209292 | DOI
[12] M. G. Vasin, J. Stat. Mech., 2011 (2011), P05009, arXiv: 1010.0061 | DOI
[13] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF, SPb., 1998 | MR
[14] J. C. Collins, Renormalization. An Introduction to Renormalization, the Renormalization Group, and the Operator-Product Expansion, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[15] K. Binder, A. P. Young, Rev. Modern Phys., 58:4 (1986), 801–976 | DOI
[16] F. H. Stillinger, J. Chem. Phys., 89:10 (1988), 6461–6469 | DOI
[17] N. Rivier, D. M. Duffy, “Line defects and glass transition”, Numerical Methods in the Study of Critical Phenomena (Carry-le-Rouet, France, June 2–4, 1980), Springer Series in Synergetics, 9, eds. J. Della Dora, J. Demongeot, B. Lacole, Springer, Berlin–New York, 1981, 132–142 | DOI | MR
[18] A. Kamenev, “Many-body theory of non-equilibrium systems”, Nanophysics: Coherence and Transport, eds. H. Bouchiat, J. Dalibard, Elsevier, Amsterdam, 2005, 177–246
[19] M. G. Vasin, Phys. Rev. B, 74:21 (2006), 214116, 5 pp. | DOI
[20] I. S. Burmistrov, N. M. Chtchelkatchev, Phys. Rev. B, 77:19 (2008), 195319, 12 pp. | DOI
[21] I. S. Beloborodov, A. V. Lopatin, G. Schwiete, V. M. Vinokur, Phys. Rev. B, 70:7 (2004), 073404, 4 pp., arXiv: cond-mat/0311512 | DOI
[22] M. G. Vasin, N. M. Schelkachev, V. M. Vinokur, TMF, 163:1 (2010), 163–176 | DOI | DOI | Zbl
[23] A. Z. Patashinskii, V. L. Pokrovskii, Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR
[24] C. Hohenberg, B. I. Halperin, Rev. Modern Phys., 49:3 (1977), 435–479 | DOI
[25] D. R Reichman, P. Charbonneau, J. Stat. Mech., 05 (2005), P05013, 24 pp. | DOI
[26] W. Kob, “The Mode-Coupling Theory of the Glass Transition”, Experimental and Theoretical Approaches to Supercooled Liquids: Advances and Novel Applications, eds. J. Fourkas, D. Kivelson, U. Mohanty, and K. Nelson, ACS Books, Washington, 1997, 28, arXiv: cond-mat/9702073 | DOI