Gauge theory of the liquid–glass transition in static and dynamical approaches
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 3, pp. 467-483 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose static and dynamical formulations of the liquid–glass transition theory based on the glass gauge theory and the fluctuation theory of phase transitions. In accordance with the proposed theory, the liquid–glass transition is an unattainable second-order phase transition blocked by a premature critical slowing of the gauge field relaxation caused by the system frustration. We show that the proposed theory qualitatively agrees well with experimental data.
Mots-clés : liquid–glass transition
Keywords: nonequilibrium dynamics, gauge field.
@article{TMF_2013_174_3_a6,
     author = {M. G. Vasin},
     title = {Gauge theory of the~liquid{\textendash}glass transition in static and dynamical approaches},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {467--483},
     year = {2013},
     volume = {174},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a6/}
}
TY  - JOUR
AU  - M. G. Vasin
TI  - Gauge theory of the liquid–glass transition in static and dynamical approaches
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 467
EP  - 483
VL  - 174
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a6/
LA  - ru
ID  - TMF_2013_174_3_a6
ER  - 
%0 Journal Article
%A M. G. Vasin
%T Gauge theory of the liquid–glass transition in static and dynamical approaches
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 467-483
%V 174
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a6/
%G ru
%F TMF_2013_174_3_a6
M. G. Vasin. Gauge theory of the liquid–glass transition in static and dynamical approaches. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 3, pp. 467-483. http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a6/

[1] N. Rivier, D. M. Duffy, J. Physique, 43:2 (1982), 293–306 | DOI | MR

[2] D. R. Nelson, Phys. Rev. B, 28:10 (1983), 5515–5535 | DOI | MR

[3] N. Rivier, Revista Brasileira de Flsica, 15:4 (1985), 311–378

[4] I. E. Dzyaloshinskii, G. E. Volovik, J. Physique, 39:6 (1978), 693–700 | DOI

[5] J. A. Hertz, Phys. Rev. B, 18:9 (1978), 4875–4885 | DOI

[6] D. Kivelson, G. Tarjus, Phyl. Mag. B, 77:2 (1998), 245–256 | DOI

[7] G. Tarjus, S. A. Kivelson, Z. Nussinov, P. Viot, J. Phys., 17:50 (2005), R1143–R1182 | DOI

[8] D. Chowdhury, Spin Glasses and Other Frustrated Systems, World Sci., Singapore, 1986

[9] G. Toulouse, Commun. Phys., 2 (1977), 115–119

[10] I. Kanazawa, J. Non-Cryst. Solids, 293–295:1–2 (2001), 615–619 | DOI

[11] Z. Nussinov, Phys. Rev. B, 69:1 (2004), 014208, 25 pp., arXiv: cond-mat/0209292 | DOI

[12] M. G. Vasin, J. Stat. Mech., 2011 (2011), P05009, arXiv: 1010.0061 | DOI

[13] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF, SPb., 1998 | MR

[14] J. C. Collins, Renormalization. An Introduction to Renormalization, the Renormalization Group, and the Operator-Product Expansion, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[15] K. Binder, A. P. Young, Rev. Modern Phys., 58:4 (1986), 801–976 | DOI

[16] F. H. Stillinger, J. Chem. Phys., 89:10 (1988), 6461–6469 | DOI

[17] N. Rivier, D. M. Duffy, “Line defects and glass transition”, Numerical Methods in the Study of Critical Phenomena (Carry-le-Rouet, France, June 2–4, 1980), Springer Series in Synergetics, 9, eds. J. Della Dora, J. Demongeot, B. Lacole, Springer, Berlin–New York, 1981, 132–142 | DOI | MR

[18] A. Kamenev, “Many-body theory of non-equilibrium systems”, Nanophysics: Coherence and Transport, eds. H. Bouchiat, J. Dalibard, Elsevier, Amsterdam, 2005, 177–246

[19] M. G. Vasin, Phys. Rev. B, 74:21 (2006), 214116, 5 pp. | DOI

[20] I. S. Burmistrov, N. M. Chtchelkatchev, Phys. Rev. B, 77:19 (2008), 195319, 12 pp. | DOI

[21] I. S. Beloborodov, A. V. Lopatin, G. Schwiete, V. M. Vinokur, Phys. Rev. B, 70:7 (2004), 073404, 4 pp., arXiv: cond-mat/0311512 | DOI

[22] M. G. Vasin, N. M. Schelkachev, V. M. Vinokur, TMF, 163:1 (2010), 163–176 | DOI | DOI | Zbl

[23] A. Z. Patashinskii, V. L. Pokrovskii, Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR

[24] C. Hohenberg, B. I. Halperin, Rev. Modern Phys., 49:3 (1977), 435–479 | DOI

[25] D. R Reichman, P. Charbonneau, J. Stat. Mech., 05 (2005), P05013, 24 pp. | DOI

[26] W. Kob, “The Mode-Coupling Theory of the Glass Transition”, Experimental and Theoretical Approaches to Supercooled Liquids: Advances and Novel Applications, eds. J. Fourkas, D. Kivelson, U. Mohanty, and K. Nelson, ACS Books, Washington, 1997, 28, arXiv: cond-mat/9702073 | DOI