Statistical field theory of a nonadditive system
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 3, pp. 444-466 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on quantum field methods, we develop a statistical theory of complex systems with nonadditive potentials. Using the Martin–Siggia–Rose method, we find the effective system Lagrangian, from which we obtain evolution equations for the most probable values of the order parameter and its fluctuation amplitudes. We show that these equations are unchanged under deformations of the statistical distribution while the probabilities of realizing different phase trajectories depend essentially on the nonadditivity parameter. We find the generating functional of a nonadditive system and establish its relation to correlation functions; we introduce a pair of additive generating functionals whose expansion terms determine the set of multipoint Green's functions and their self-energy parts. We find equations for the generating functional of a system having an internal symmetry and constraints. In the harmonic approximation framework, we determine the partition function and moments of the order parameter depending on the nonadditivity parameter. We develop a perturbation theory that allows calculating corrections of an arbitrary order to the indicated quantities.
Keywords: nonadditivity parameter, generating functional, partition function.
@article{TMF_2013_174_3_a5,
     author = {A. I. Olemskoi and O. V. Yushchenko and A. Yu. Badalyan},
     title = {Statistical field theory of a~nonadditive system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {444--466},
     year = {2013},
     volume = {174},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a5/}
}
TY  - JOUR
AU  - A. I. Olemskoi
AU  - O. V. Yushchenko
AU  - A. Yu. Badalyan
TI  - Statistical field theory of a nonadditive system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 444
EP  - 466
VL  - 174
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a5/
LA  - ru
ID  - TMF_2013_174_3_a5
ER  - 
%0 Journal Article
%A A. I. Olemskoi
%A O. V. Yushchenko
%A A. Yu. Badalyan
%T Statistical field theory of a nonadditive system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 444-466
%V 174
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a5/
%G ru
%F TMF_2013_174_3_a5
A. I. Olemskoi; O. V. Yushchenko; A. Yu. Badalyan. Statistical field theory of a nonadditive system. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 3, pp. 444-466. http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a5/

[1] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, Mir, M., 1978 | MR

[2] A. I. Olemskoi, Sinergetika slozhnykh sistem: Fenomenologiya i statisticheskaya teoriya, KRASAND, M., 2009

[3] C. Tsallis, Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World, Springer, New York, 2009 | MR | Zbl

[4] C. Tsallis, J. Stat. Phys., 52:1–2 (1988), 479–487 | DOI | MR | Zbl

[5] E. M. Curado, C. Tsallis, J. Phys. A, 24:2 (1991), L69–L72 | DOI | MR

[6] S. Abe, Phys. Lett. A, 224:6 (1997), 326–330 | DOI | MR

[7] C. Tsallis, R. S. Mendes, A. R. Plastino, Physica A, 261:3–4 (1998), 534–554 | DOI

[8] G. Kaniadakis, Phys. Rev. E, 66:5 (2002), 056125, 17 pp., arXiv: cond-mat/0210467 | DOI | MR

[9] G. Kaniadakis, M. Lissia, A. M. Scarfone, Phys. A, 340:1–3 (2004), 41–49 ; Phys. Rev. E, 71:4 (2005), 046128, 12 pp., arXiv: cond-mat/0409683 | DOI | MR | DOI | MR

[10] J. Naudts, Phys. A, 340:1–3 (2004), 32–40 | DOI | MR

[11] A. M. Scarfone, T. Wada, Phys. Rev. E, 72:2 (2005), 026123, 13 pp., arXiv: cond-mat/0504117 | DOI

[12] A. Lavagno, A. M. Scarfone, N. P. Swamy, Eur. Phys. J. B, 50:1–2 (2006), 351–354, arXiv: cond-mat/0509477 | DOI

[13] A. Lavagno, A. M. Scarfone, N. P. Swamy, Phys. A, 40:30 (2007), 8635–8654, arXiv: 0706.0426 | DOI | MR | Zbl

[14] G. Vitiello, Topological defects, fractals and the structure of quantum field theory, arXiv: 0807.2164

[15] F. Wilczek, Fractional statistics and anyon superconductivity, World Sci., Singapore, 1990 | MR

[16] L. C. Biedenharn, Phys. A, 22:18 (1989), L873–L878 | DOI | MR | Zbl

[17] A. J. Macfarlane, J. Phys. A, 22:21 (1989), 4581–4588 | DOI | MR | Zbl

[18] E. Celeghini, M. Rasetti, G. Vitiello, Phys. Rev. Lett., 66:16 (1991), 2056–2059 | DOI | MR | Zbl

[19] E. Heine, J. reine angew. Math., 32 (1846), 210–212 ; 34 (1847), 285–328 | DOI | MR | Zbl | DOI | MR | Zbl

[20] F. H. Jackson, Amer. J. Math., 38 (1909), 26

[21] H. Exton, q-Hypergeometric Functions and Applications, Ellis Horwood, New York, 1983 | MR | Zbl

[22] C. Kassel, Quantum Groups, Graduate Texts in Mathematics, 155, Springer, New York, 1995 | DOI | MR | Zbl

[23] A. Lavagno, N. P. Swamy, Phys. Rev. E, 61:2 (2000), 1218–1226, arXiv: ; 65:3 (2002), 036101, 5 pp. quant-ph/9912111 | DOI | MR | DOI | MR

[24] D. Sornette, Critical Phenomena in Natural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, Springer, Berlin, 2006 | MR | Zbl

[25] A. Erzan, J.-P. Eckmann, Phys. Rev. Lett., 78:17 (1997), 3245–3248 | DOI | MR | Zbl

[26] A. Erzan, Phys. Lett. A, 225:4–6 (1997), 235–238 | DOI | MR | Zbl

[27] A. B. Adiba, A. A. Moreirab, J. S. Andrade Jr., M. P. Almeida, Phys. A, 322 (2003), 276–284 | DOI | MR

[28] S. Abe, Y. Okamoto (eds.), Nonextensive Statistical Mechanics and its Applications, Papers from the IMS Winter School on Statistical Mechanics: Nonextensive Generalization of Boltzmann–Gibbs Statistical Mechanics and its Applications (Okazaki, February 15–18, 1999), Lecture Notes in Physics, 560, Springer, Berlin, 2001 | DOI | MR | Zbl

[29] A. A. Abrikosov, A. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, GIFML, M., 1962 | MR

[30] E. M. Lifshits, L. P. Pitaevskii, Statisticheskaya fizika. Ch. 2. Teoriya kondensirovannogo sostoyaniya, Fizmatlit, M., 2002

[31] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 1993 | MR

[32] A. I. Olemskoi, S. S. Borysov, I. A. Shuda, Eur. Phys. J. B, 77:2 (2010), 219–231 | DOI | MR

[33] A. I. Olemskoi, I. A. Shuda, Phys. Lett. A, 373:44 (2009), 4012–4016 | DOI | MR | Zbl

[34] P. C. Martin, E. D. Siggia, H. A. Rose, Phys. Rev. A, 8:1 (1973), 423–437 | DOI

[35] E. P. Borges, Phys. A, 340:1–3 (2004), 95–101, arXiv: cond-mat/0304545 | DOI | MR

[36] H. Risken, The Fokker-Planck Equation. Methods of Solution and Applications, Springer, Berlin, 1984 | MR | Zbl

[37] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Ch. 1, Fizmatlit, M., 2002

[38] Yu. G. Rudoi, TMF, 135:1 (2003), 3–54 | DOI | DOI | MR | Zbl

[39] H. Suyari, q-Stirling's formula in Tsallis statistics, arXiv: cond-mat/0401541

[40] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[41] A. I. Olemskoi, A. S. Vaylenko, I. A. Shuda, Phys. A, 388:9 (2009), 1929–1938, arXiv: 0810.1189 | DOI | MR

[42] S. Umarov, C. Tsallis, S. Steinberg, Milan. J. Math., 76 (2008), 307–308 | DOI | MR

[43] M. Jauregui, C. Tsallis, J. Math. Phys., 51 (2010), 063304 | DOI | MR | Zbl