and for $p>p_0$ differ qualitatively. We note that the considered physical system undergoes a phase transition at $p=p_0$. The analysis uses the Laplace method for functional integrals with Gaussian measures.
Keywords: perturbation theory series, Lieb trace formula, conditional Wiener measure, Laplace method in a Banach space.
@article{TMF_2013_174_3_a4,
author = {V. R. Fatalov},
title = {Perturbation theory series in quantum mechanics: {Phase} transition and exact asymptotic forms for the~expansion coefficients},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {416--443},
year = {2013},
volume = {174},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a4/}
}
TY - JOUR AU - V. R. Fatalov TI - Perturbation theory series in quantum mechanics: Phase transition and exact asymptotic forms for the expansion coefficients JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 416 EP - 443 VL - 174 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a4/ LA - ru ID - TMF_2013_174_3_a4 ER -
%0 Journal Article %A V. R. Fatalov %T Perturbation theory series in quantum mechanics: Phase transition and exact asymptotic forms for the expansion coefficients %J Teoretičeskaâ i matematičeskaâ fizika %D 2013 %P 416-443 %V 174 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a4/ %G ru %F TMF_2013_174_3_a4
V. R. Fatalov. Perturbation theory series in quantum mechanics: Phase transition and exact asymptotic forms for the expansion coefficients. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 3, pp. 416-443. http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a4/
[1] Dzh. Glimm, A. Dzhaffe, Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem kontinualnykh integralov, Mir, M., 1984 | MR | Zbl
[2] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl
[3] V. I. Piterbarg, V. R. Fatalov, UMN, 50:6(306) (1995), 57–150 | DOI | MR | Zbl
[4] V. R. Fatalov, TMF, 168:2 (2011), 299–340 | DOI | DOI | Zbl
[5] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 ; т. 2, Гармонический анализ. Самосопряженность, Мир, M., 1978 ; т. 4, Анализ операторов, Мир, M., 1982 | MR | Zbl | MR | Zbl | MR | MR | Zbl
[6] R. Feinman, “Prostranstvenno-vremennoi pokhod k nerelyativistskoi kvantovoi mekhanike”, Voprosy prichinnosti v kvantovoi mekhanike, IL, M., 1955, 167–207 | MR
[7] V. R. Fatalov, “O metode Laplasa dlya gaussovskikh mer v banakhovom prostranstve”, TVP (to appear)
[8] V. R. Fatalov, Izv. RAN. Ser. matem., 75:4 (2011), 189–223 | DOI | DOI | MR | Zbl
[9] V. R. Fatalov, TVP, 53:1 (2008), 72–99 | DOI | DOI | MR | Zbl
[10] S. Albeverio, V. Fatalov, V. Piterbarg, J. Math. Sci. Univ. Tokyo, 16:1 (2009), 55–93 | MR | Zbl
[11] V. R. Fatalov, Izv. RAN. Ser. matem., 75:4 (2011), 189–223 | DOI | DOI | MR | Zbl
[12] V. R. Fatalov, Tochnye asimptotiki veroyatnostnykh raspredelenii i funktsionalnykh integralov. Metod Laplasa, Diss. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 2009
[13] B. Simon, Functional Integration and Quantum Physics, Pure and Applied Mathematics, 86, Academic Press, New York, 1979 | MR | Zbl
[14] W. Janke, A. Pelster (eds.), Proceedings of the 9th International Conference (Dresden, September 23–28, 2007), World Sci., Hackensack, NJ, 2008 | MR | Zbl
[15] J. Zinn-Justin, “Functional integrals in physics: the main achievements”, Path Integrals: New Trends and Perspectives, Proceedings of the 9th International Conference (Dresden, September 23–28, 2007), eds. W. Janke, A. Pelster, World Sci., Hackensack, NJ, 2008, 251–260 | DOI | MR | Zbl
[16] I. M. Kovalchik, L. A. Yanovich, Obobschennyi vinerovskii integral i nekotorye ego prilozheniya, Nauka i tekhnika, Minsk, 1989 | MR | Zbl
[17] R. S. Ellis, J. S. Rosen, Comm. Math. Phys., 82:2 (1981), 153–181 | DOI | MR | Zbl
[18] R. S. Ellis, J. S. Rosen, Trans. Amer. Math. Soc., 273:2 (1982), 447–481 | DOI | MR | Zbl
[19] C. M. Bender, T. T. Wu, Phys. Rev., 184 (1969), 1231–1260 | DOI | MR
[20] C. M. Bender, T. T. Wu, Phys. Rev. Lett., 27:7 (1971), 461–465 | DOI
[21] C. M. Bender, T. T. Wu, Phys. Rev. D, 7 (1972), 1620–1636 | DOI
[22] T. Banks, C. M. Bender, T. T. Wu, Phys. Rev. D, 8:10 (1973), 3346–3366 | DOI | MR
[23] C. M. Bender, T. T. Wu, Phys. Rev. Lett., 37:3 (1976), 117–120 | DOI | MR
[24] L. N. Lipatov, ZhETF, 72:2 (1972), 411–427 | MR
[25] L. N. Lipatov, Pisma v ZhETF, 25:2 (1977), 116–119
[26] E. Brézin, J. C. Le Guillou, J. Zinn-Justin, Phys. Rev. D, 15:6 (1977), 1544–1557 | DOI
[27] E. Brézin, J. C. Le Guillou, J. Zinn-Justin, Phys. Rev. D, 15:6 (1977), 1558–1564 | DOI
[28] J. C. Le Guillou, J. Zinn-Justin (eds.), Large Order Behaviour of Perturbation Theory, North-Holland, Amsterdam, 1990
[29] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR
[30] V. V. Belokurov, D. V. Shirkov, Teoriya vzaimodeistviya chastits, Nauka, M., 1986
[31] V. V. Belokurov, Yu. P. Solovev, E. T. Shavgulidze, Metod postroeniya kvantovopolevoi teorii vozmuschenii so skhodyaschimisya ryadami, Preprint NIIYaF MGU 95–31/395, MGU, M., 1995
[32] J. Zinn-Justin, Phys. Rep., 70:2 (1981), 109–167 | DOI | MR
[33] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR | MR | Zbl
[34] B. Saimon, Model $P(\varphi)_2$ evklidovoi kvantovoi teorii polya, Mir, M., 1976
[35] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[36] B. Simon, Ann. Phys., 58:1 (1970), 76–136 | DOI | MR
[37] E. Lieb, Bull. Amer. Math. Soc., 82:5 (1976), 751–753 | DOI | MR | Zbl
[38] N. Ikeda, S. Vatanabe, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | MR | MR | Zbl
[39] T. Khida, Brounovskoe dvizhenie, Nauka, M., 1987 | MR | MR | Zbl
[40] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu, Lan, SPb., 2000 | MR | Zbl
[41] Kh.-S. Go, Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979 | MR | Zbl
[42] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | MR | Zbl
[43] M. A. Lifshits, Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995 | MR | Zbl
[44] V. I. Bogachev, Gaussovskie mery, Fizmatlit, M., 1997 | MR | MR | Zbl
[45] S. R. S. Varadhan, Comm. Pure Appl. Math., 19:3 (1996), 261–286 | DOI | MR
[46] S. R. S. Varadhan, Lett. Math. Phys., 88:1–3 (2009), 175–185 | DOI | MR | Zbl
[47] E. Olivieri, M. E. Vares, Large Deviations and Metastability, Encyclopedia of Mathematics and its Applications, 100, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl
[48] R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Springer, Berlin, 2006 | MR | Zbl
[49] E. Bolthausen, Prob. Theory Relat. Fields, 72:2 (1986), 305–318 | DOI | MR | Zbl
[50] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, v. 1, Nauka, M., 1971 | MR | Zbl
[51] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Chast I. Obschaya teoriya, URSS, M., 2004 | MR
[52] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | MR | Zbl
[53] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 | MR | MR | Zbl
[54] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 | MR | MR | Zbl
[55] K. Fernik, “Regulyarnost traektorii gaussovskikh sluchainykh funktsii”, Sluchainye protsessy. Vyborochnye funktsii i peresecheniya, Matematika. Novoe v zarubezhnoi nauke. Vyp. 10, ed. Yu. K. Belyaev, Mir, M., 1978, 63–132
[56] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1961 | MR | MR | Zbl
[57] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | MR | Zbl