Mots-clés : coadjoint orbit of Lie algebra.
@article{TMF_2013_174_3_a1,
author = {C. Roger},
title = {Double extensions of {Lie} algebras of {Kac{\textendash}Moody} type and applications to some {Hamiltonian} systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {364--382},
year = {2013},
volume = {174},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a1/}
}
TY - JOUR AU - C. Roger TI - Double extensions of Lie algebras of Kac–Moody type and applications to some Hamiltonian systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 364 EP - 382 VL - 174 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a1/ LA - ru ID - TMF_2013_174_3_a1 ER -
C. Roger. Double extensions of Lie algebras of Kac–Moody type and applications to some Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 3, pp. 364-382. http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a1/
[1] P. J. Hilton, U. Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics, 4, Springer, New York, 1997 | DOI | MR | Zbl
[2] Y. Billig, Lett. Math. Phys., 64:2 (2003), 155–169 | DOI | MR | Zbl
[3] A. Haddi, Commun. Algebra, 20:4 (1992), 1145–1166 | DOI | MR | Zbl
[4] A. Haddi, C. R. Acad. Sci. Paris. Sér. I Math., 306:16 (1988), 691–694 | MR | Zbl
[5] P. Zusmanovich, Astérisque, 226 (1994), 435–452 | MR | Zbl
[6] J.-L. Loday, Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer, Berlin, 1998 | DOI | MR | Zbl
[7] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, New York, 1977 | DOI | MR | Zbl
[8] V. C. Kac, Infinite-Dimensional Lie Algebras. An introduction, Progress in Mathematics, 44, Birkhäuser, Boston, MA, 1983 | MR | Zbl
[9] A. A. Kirillov, Lectures on the Orbit Method, Graduate Studies in Mathematics, 64, AMS, Providence, RI, 2004 | DOI | MR | Zbl
[10] V. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, 125, Springer, New York, 1998 | MR | Zbl
[11] B. Khesin, R. Wendt, The Geometry of Infinite-Dimensional Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge, 51, Springer, Berlin, 2009 | MR | Zbl
[12] B. Khesin, Symplectic structures and dynamics on vortex membranes, arXiv: 1201.5914 | MR
[13] A. Lichnerowicz, Ann. Inst. Fourier (Grenoble), 24:3 (1974), 219–266 | DOI | MR | Zbl
[14] C. Vizman, Ann. Univ. Vest Timiş. Ser. Mat.-Inform., 48:1–2 (2010), 285–297 | MR | Zbl
[15] S. Haller, C. Vizman, Math. Ann., 329:4 (2004), 771–785 | DOI | MR | Zbl
[16] C. Roger, “The group of volume preserving diffeomorphisms and the Lie algebra of unimodular vector fields: survey of some classical and not-so-classical results”, Twenty Years of Bialowieza: a Mathematical Anthology, World Scientific Monograph Series in Mathematics, 8, eds. S. T. Ali, G. G. Emch, A. Odzijewicz, M. Schlichenmaier, S. L. Woronowicz, World Sci., Hackensack, NJ, 2005, 79–98 | DOI | MR | Zbl
[17] C. Roger, “Unimodular vector fields and deformation quantization”, Deformation Quantization, Proceedings of the meeting of theoretical physicists and mathematicians (Strasbourg, France, May 31 – June 2, 2001), IRMA Lectures in Mathematics and Theoretical Physics, 1, ed. G. Halbout, de Gruyter, Berlin, 2002, 135–148 | MR | Zbl
[18] C. Roger, Rep. Math. Phys., 35:2–3 (1995), 225–266 | DOI | MR | Zbl
[19] J. E. Marsden, T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17, Springer, New York, 1999 | DOI | MR | Zbl
[20] A. Banyaga, The Structure of Classical Diffeomorphism Groups, Mathematics and its Applications, 400, Kluwer, Dordrecht, 1997 | MR | Zbl
[21] V. Ovsienko, C. Roger, Comm. Math. Phys., 273:2 (2007), 357–378, arXiv: math-ph/0602043 | DOI | MR | Zbl
[22] D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge Monographs on Plasma Physics, 1, Cambridge Univ. Press, Cambridge, 1993 | MR
[23] M. Scheunert, The Theory of Lie Superalgebras. An introduction, Lecture Notes in Mathematics, 716, Springer, Berlin, 1979 | DOI | MR | Zbl
[24] P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, E. Witten (eds.), Material from the Special Year on Quantum Field Theory (Princeton, NJ, 1996–1997), v. 1, 2, AMS, Providence, RI, 1999 | MR | Zbl
[25] P. Uest, Vvedenie v supersimmetriyu i supergravitatsiyu, Mir, M., 1989 | MR | Zbl
[26] R. Coquereaux, L. Frappat, E. Ragoucy, P. Sorba, Comm. Math. Phys., 133:1 (1990), 1–35 | DOI | MR | Zbl
[27] G. M. Tuynman, J. Geom. Phys., 60:12 (2010), 1919–1939 | DOI | MR | Zbl
[28] G. M. Tuynman, Geometric quantization of superorbits: a case study, arXiv: 0901.1811 | MR
[29] P. B. A. Lecomte, C. Roger, J. Differential Geom., 44:3 (1996), 529–549 | DOI | MR | Zbl
[30] I. M. Gel'fand, “The cohomology of infinite dimensional Lie algebras: some questions of integral geometry”, Actes du Congrès International des Mathématiciens (Nice, France, 1970), v. 1, Gauthier-Villars, Paris, 1971, 95–111 | MR | Zbl
[31] Y. Billig, J. Math. Phys., 46:4 (2005), 043101, 13 pp., arXiv: math-ph/0401052 | DOI | MR | Zbl