Double extensions of Lie algebras of Kac–Moody type and applications to some Hamiltonian systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 3, pp. 364-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe some Lie algebras of the Kac–Moody type, construct their double extensions, central and by derivations{;} we also construct the corresponding Lie groups in some cases. We study the case of the Lie algebra of unimodular vector fields in more detail and use the linear Poisson structure on their regular duals to construct generalizations of some infinite-dimensional Hamiltonian systems, such as magnetohydrodynamics.
Keywords: unimodular vector field, extension of Lie algebra, hydrodynamics, magnetohydrodynamics
Mots-clés : coadjoint orbit of Lie algebra.
@article{TMF_2013_174_3_a1,
     author = {C. Roger},
     title = {Double extensions of {Lie} algebras of {Kac{\textendash}Moody} type and applications to some {Hamiltonian} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {364--382},
     year = {2013},
     volume = {174},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a1/}
}
TY  - JOUR
AU  - C. Roger
TI  - Double extensions of Lie algebras of Kac–Moody type and applications to some Hamiltonian systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 364
EP  - 382
VL  - 174
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a1/
LA  - ru
ID  - TMF_2013_174_3_a1
ER  - 
%0 Journal Article
%A C. Roger
%T Double extensions of Lie algebras of Kac–Moody type and applications to some Hamiltonian systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 364-382
%V 174
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a1/
%G ru
%F TMF_2013_174_3_a1
C. Roger. Double extensions of Lie algebras of Kac–Moody type and applications to some Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 3, pp. 364-382. http://geodesic.mathdoc.fr/item/TMF_2013_174_3_a1/

[1] P. J. Hilton, U. Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics, 4, Springer, New York, 1997 | DOI | MR | Zbl

[2] Y. Billig, Lett. Math. Phys., 64:2 (2003), 155–169 | DOI | MR | Zbl

[3] A. Haddi, Commun. Algebra, 20:4 (1992), 1145–1166 | DOI | MR | Zbl

[4] A. Haddi, C. R. Acad. Sci. Paris. Sér. I Math., 306:16 (1988), 691–694 | MR | Zbl

[5] P. Zusmanovich, Astérisque, 226 (1994), 435–452 | MR | Zbl

[6] J.-L. Loday, Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer, Berlin, 1998 | DOI | MR | Zbl

[7] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, New York, 1977 | DOI | MR | Zbl

[8] V. C. Kac, Infinite-Dimensional Lie Algebras. An introduction, Progress in Mathematics, 44, Birkhäuser, Boston, MA, 1983 | MR | Zbl

[9] A. A. Kirillov, Lectures on the Orbit Method, Graduate Studies in Mathematics, 64, AMS, Providence, RI, 2004 | DOI | MR | Zbl

[10] V. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, 125, Springer, New York, 1998 | MR | Zbl

[11] B. Khesin, R. Wendt, The Geometry of Infinite-Dimensional Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge, 51, Springer, Berlin, 2009 | MR | Zbl

[12] B. Khesin, Symplectic structures and dynamics on vortex membranes, arXiv: 1201.5914 | MR

[13] A. Lichnerowicz, Ann. Inst. Fourier (Grenoble), 24:3 (1974), 219–266 | DOI | MR | Zbl

[14] C. Vizman, Ann. Univ. Vest Timiş. Ser. Mat.-Inform., 48:1–2 (2010), 285–297 | MR | Zbl

[15] S. Haller, C. Vizman, Math. Ann., 329:4 (2004), 771–785 | DOI | MR | Zbl

[16] C. Roger, “The group of volume preserving diffeomorphisms and the Lie algebra of unimodular vector fields: survey of some classical and not-so-classical results”, Twenty Years of Bialowieza: a Mathematical Anthology, World Scientific Monograph Series in Mathematics, 8, eds. S. T. Ali, G. G. Emch, A. Odzijewicz, M. Schlichenmaier, S. L. Woronowicz, World Sci., Hackensack, NJ, 2005, 79–98 | DOI | MR | Zbl

[17] C. Roger, “Unimodular vector fields and deformation quantization”, Deformation Quantization, Proceedings of the meeting of theoretical physicists and mathematicians (Strasbourg, France, May 31 – June 2, 2001), IRMA Lectures in Mathematics and Theoretical Physics, 1, ed. G. Halbout, de Gruyter, Berlin, 2002, 135–148 | MR | Zbl

[18] C. Roger, Rep. Math. Phys., 35:2–3 (1995), 225–266 | DOI | MR | Zbl

[19] J. E. Marsden, T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17, Springer, New York, 1999 | DOI | MR | Zbl

[20] A. Banyaga, The Structure of Classical Diffeomorphism Groups, Mathematics and its Applications, 400, Kluwer, Dordrecht, 1997 | MR | Zbl

[21] V. Ovsienko, C. Roger, Comm. Math. Phys., 273:2 (2007), 357–378, arXiv: math-ph/0602043 | DOI | MR | Zbl

[22] D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge Monographs on Plasma Physics, 1, Cambridge Univ. Press, Cambridge, 1993 | MR

[23] M. Scheunert, The Theory of Lie Superalgebras. An introduction, Lecture Notes in Mathematics, 716, Springer, Berlin, 1979 | DOI | MR | Zbl

[24] P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, E. Witten (eds.), Material from the Special Year on Quantum Field Theory (Princeton, NJ, 1996–1997), v. 1, 2, AMS, Providence, RI, 1999 | MR | Zbl

[25] P. Uest, Vvedenie v supersimmetriyu i supergravitatsiyu, Mir, M., 1989 | MR | Zbl

[26] R. Coquereaux, L. Frappat, E. Ragoucy, P. Sorba, Comm. Math. Phys., 133:1 (1990), 1–35 | DOI | MR | Zbl

[27] G. M. Tuynman, J. Geom. Phys., 60:12 (2010), 1919–1939 | DOI | MR | Zbl

[28] G. M. Tuynman, Geometric quantization of superorbits: a case study, arXiv: 0901.1811 | MR

[29] P. B. A. Lecomte, C. Roger, J. Differential Geom., 44:3 (1996), 529–549 | DOI | MR | Zbl

[30] I. M. Gel'fand, “The cohomology of infinite dimensional Lie algebras: some questions of integral geometry”, Actes du Congrès International des Mathématiciens (Nice, France, 1970), v. 1, Gauthier-Villars, Paris, 1971, 95–111 | MR | Zbl

[31] Y. Billig, J. Math. Phys., 46:4 (2005), 043101, 13 pp., arXiv: math-ph/0401052 | DOI | MR | Zbl