@article{TMF_2013_174_2_a7,
author = {E. I. Zelenov},
title = {Models of $p$-adic mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {285--291},
year = {2013},
volume = {174},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a7/}
}
E. I. Zelenov. Models of $p$-adic mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 285-291. http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a7/
[1] Dzh. Makki, Lektsii po matematicheskim osnovam kvantovoi mekhaniki, Mir, M., 1965 | MR | Zbl
[2] I. V. Volovich, Number Theory as the Ultimate Physical Theory, Preprint TH 4781/87, CERN, Geneva, 1987 | MR
[3] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics, 1, World Scientific, Singapure, 1994 | MR | Zbl
[4] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl
[5] E. I. Zelenov, Vestnik SamGU. Estestvennonauchnaya seriya, 8:1(67) (2008), 108–113
[6] A. Yu. Khrennikov, TMF, 97:3 (1993), 348–363 | DOI | MR | Zbl
[7] A. Yu. Khrennikov, M. Nilsson, $p$-Adic Deterministic and Random Dynamical Systems, Mathematics and its Applications, 574, Kluwer, Dordrecht–Boston–London, 2004 | MR
[8] R. Sikorskii, Bulevy algebry, Mir, M., 1969 | MR
[9] A. M. Gleason, J. Math. Mech., 6 (1957), 885–893 | MR | Zbl
[10] E. I. Zelenov, TMF, 164:3 (2010), 426–434 | DOI | DOI | Zbl
[11] M. Rieffel, Duke Math. J., 39:4 (1972), 745–752 | DOI | MR | Zbl
[12] E. I. Zelenov, TMF, 86:2 (1991), 210–220 | DOI | MR | Zbl