The~formal de~Rham complex
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 256-271

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a formal construction generalizing the classic de Rham complex to a wide class of models in mathematical physics and analysis. The presentation is divided into a sequence of definitions and elementary, easily verified statements; proofs are therefore given only in the key case. Linear operations are everywhere performed over a fixed number field $\mathbb{F}=\mathbb{R},\mathbb{C}$. All linear spaces, algebras, and modules, although not stipulated explicitly, are by definition or by construction endowed with natural locally convex topologies, and their morphisms are continuous.
Keywords: de Rham complex, multiplicator, derivation, exterior algebra, boundary operator, exterior differential, complex associated with an algebra, grading.
@article{TMF_2013_174_2_a5,
     author = {V. V. Zharinov},
     title = {The~formal {de~Rham} complex},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {256--271},
     publisher = {mathdoc},
     volume = {174},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a5/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - The~formal de~Rham complex
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 256
EP  - 271
VL  - 174
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a5/
LA  - ru
ID  - TMF_2013_174_2_a5
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T The~formal de~Rham complex
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 256-271
%V 174
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a5/
%G ru
%F TMF_2013_174_2_a5
V. V. Zharinov. The~formal de~Rham complex. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 256-271. http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a5/