$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 243-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For solutions of the Dirichlet problem for a second-order elliptic equation, we establish an analogue of the Carleson theorem on $L_p$-estimates. Under the same conditions on the coefficients for which the unique solvability of the considered problem is known, we prove this criterion for the validity of estimate of the solution norm in the space $L_p$ with a measure. We require their Dini continuity on the boundary, but we assume only their measurability and boundedness in the domain under consideration.
Mots-clés : elliptic equation, nontangent maximal function
Keywords: Dirichlet problem, boundary value, Carleson measure.
@article{TMF_2013_174_2_a4,
     author = {A. K. Gushchin},
     title = {$L_p$-estimates for solutions of second-order elliptic equation {Dirichlet} problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {243--255},
     year = {2013},
     volume = {174},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a4/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - $L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 243
EP  - 255
VL  - 174
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a4/
LA  - ru
ID  - TMF_2013_174_2_a4
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T $L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 243-255
%V 174
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a4/
%G ru
%F TMF_2013_174_2_a4
A. K. Gushchin. $L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 243-255. http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a4/

[1] L. Carleson, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[2] L. Carleson, Ann. Math., 76 (1962), 547–559 | DOI | MR | Zbl

[3] L. Hörmander, Math. Scand., 20 (1967), 65–78 | DOI | MR | Zbl

[4] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[5] Dzh. Garnet, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR

[6] A. K. Guschin, Matem. sb., 137(179):1(9) (1988), 19–64 | DOI | MR | Zbl

[7] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl

[8] V. P. Mikhailov, Differents. uravneniya, 12:10 (1976), 1877–1891, 1919 | MR

[9] O. I. Bogoyavlenskii, V. S. Vladimirov, I. V. Volovich, A. K. Guschin, Yu. N. Drozhzhinov, V. V. Zharinov, V. P. Mikhailov, “Kraevye zadachi matematicheskoi fiziki”, Teoreticheskaya i matematicheskaya fizika, Sbornik obzornykh statei 3. K 50-letiyu instituta, Tr. MIAN SSSR, 175, 1986, 63–102 | MR | Zbl

[10] I. M. Petrushko, Matem. sb., 120(162):4 (1983), 569–588 | DOI | MR | Zbl

[11] V. Zh. Dumanyan, Matem. sb., 202:7 (2011), 75–94 | DOI | DOI | MR | Zbl

[12] A. K. Guschin, V. P. Mikhailov, Matem. sb., 185:1 (1994), 121–160 | DOI | MR | Zbl

[13] A. K. Guschin, V. P. Mikhailov, Matem. sb., 186:2 (1995), 37–58 | DOI | MR | Zbl

[14] A. K. Guschin, V. P. Mikhailov, Dokl. RAN, 351:1 (1996), 7–8 | MR | Zbl

[15] A. K. Guschin, Dokl. RAN, 373:2 (2000), 161–163 | MR | Zbl

[16] A. K. Guschin, Matem. sb., 193:5 (2002), 17–36 | DOI | DOI | MR | Zbl

[17] E. De Giorgi, Mem. Accad. Sci. Torino, 3 (1957), 25–43 | MR | Zbl

[18] J. Nash, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl

[19] J. Moser, Commun. Pure Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl

[20] A. K. Guschin, Matem. sb., 189:7 (1998), 53–90 | DOI | DOI | MR | Zbl

[21] A. K. Guschin, Sib. matem. zhurn., 46:5 (2005), 1036–1052 | DOI | MR | Zbl

[22] A. K. Guschin, TMF, 157:3 (2008), 345–363 | DOI | DOI | MR | Zbl

[23] A. K. Guschin, V. P. Mikhailov, Vestnik SamGU. Estestvennonauchnaya seriya, 8:1(67) (2008), 76–94

[24] A. K. Guschin, V. P. Mikhailov, Matem. sb., 108(150):1 (1979), 3–21 | DOI | MR | Zbl

[25] Yu. A. Mikhailov, Differents. uravneniya, 19:2 (1983), 318–337, 367 | MR

[26] A. K. Guschin, Matem. sb., 203:1 (2012), 3–30 | DOI | DOI | MR

[27] Yu. A. Alkhutov, V. A. Kondratev, Differents. uravneniya, 28:5 (1992), 806–817 | MR

[28] Yu. A. Alkhutov, Matem. sb., 189:1 (1998), 3–20 | DOI | DOI | MR | Zbl

[29] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl

[30] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[31] V. P. Mikhailov, A. K. Guschin, Dopolnitelnye glavy kursa “Uravneniya matematicheskoi fiziki”, Lektsionnye kursy NOTs, 7, MIAN, M., 2007 | DOI

[32] V. A. Kondratev, I. Kopachek, O. A. Oleinik, Matem. sb., 131(173):1(9) (1986), 113–125 | MR | Zbl

[33] V. A. Kondratev, E. M. Landis, “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Differentsialnye uravneniya s chastnymi proizvodnymi – {\rm3}, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 32, VINITI, M., 1988, 99–215 | MR | Zbl

[34] A. K. Guschin, Dokl. RAN, 446:5 (2012), 667–669 | DOI