$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 243-255
Voir la notice de l'article provenant de la source Math-Net.Ru
For solutions of the Dirichlet problem for a second-order elliptic equation, we establish an analogue of the Carleson theorem on $L_p$-estimates. Under the same conditions on the coefficients for which the unique solvability of the considered problem is known, we prove this criterion for the validity of estimate of the solution norm in the space $L_p$ with a measure. We require their Dini continuity on the boundary, but we assume only their measurability and boundedness in the domain under consideration.
Mots-clés :
elliptic equation, nontangent maximal function
Keywords: Dirichlet problem, boundary value, Carleson measure.
Keywords: Dirichlet problem, boundary value, Carleson measure.
@article{TMF_2013_174_2_a4,
author = {A. K. Gushchin},
title = {$L_p$-estimates for solutions of second-order elliptic equation {Dirichlet} problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {243--255},
publisher = {mathdoc},
volume = {174},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a4/}
}
TY - JOUR AU - A. K. Gushchin TI - $L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 243 EP - 255 VL - 174 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a4/ LA - ru ID - TMF_2013_174_2_a4 ER -
A. K. Gushchin. $L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 243-255. http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a4/