Quantum rule for detection probability from Brownian motion in the space of classical fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 342-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain Born's rule from the classical theory of random waves in combination with the use of threshold-type detectors. We consider a model of classical random waves interacting with classical detectors and reproducing Born's rule. We do not discuss complicated interpretational problems of quantum foundations. The reader can select between the “weak interpretation”, the classical mathematical simulation of the quantum measurement process, and the “strong interpretation”, the classical wave model of the real quantum (in fact, subquantum) phenomena.
Keywords: foundations of quantum mechanics, Born's rule, detection probability, classical random field, threshold detector.
@article{TMF_2013_174_2_a13,
     author = {A. Yu. Khrennikov and B. Nilsson and S. Nordebo},
     title = {Quantum rule for detection probability from {Brownian} motion in the~space of classical fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {342--352},
     year = {2013},
     volume = {174},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a13/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
AU  - B. Nilsson
AU  - S. Nordebo
TI  - Quantum rule for detection probability from Brownian motion in the space of classical fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 342
EP  - 352
VL  - 174
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a13/
LA  - ru
ID  - TMF_2013_174_2_a13
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%A B. Nilsson
%A S. Nordebo
%T Quantum rule for detection probability from Brownian motion in the space of classical fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 342-352
%V 174
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a13/
%G ru
%F TMF_2013_174_2_a13
A. Yu. Khrennikov; B. Nilsson; S. Nordebo. Quantum rule for detection probability from Brownian motion in the space of classical fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 342-352. http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a13/

[1] M. Born, Z. Phys., 37:12 (1926), 863–867 | DOI | Zbl

[2] N. P. Landsman, “Algebraic quantum mechanics”, Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, eds. D. Greenberger, K. Hentschel, F. Weinert, and B. Falkenburg, Springer, Berlin, 2009, 6–9 ; “The Born rule and its interpretation”, Op. cit., 64–70; “Quantization (systematic)”, Op. cit., 510–513; “Quasi-classical limit”, Op. cit., 626–629 | DOI | Zbl

[3] G. 't Hooft, Quantum gravity as a dissipative deterministic system, arXiv: gr-qc/9903084 | MR

[4] G. 't Hooft, The mathematical basis for deterministic quantum mechanics, arXiv: quant-ph/0604008

[5] G. 't Hooft, Her. Russ. Acad. Sci., 81:10 (2011), 907–911, arXiv: quant-ph/0701097

[6] A. Yu. Khrennikov, J. Phys. A, 38:41 (2005), 9051–9073, arXiv: quant-ph/0505228 | DOI | MR | Zbl

[7] A. Yu. Khrennikov, Found. Phys. Lett., 18:7 (2006), 637–650 | DOI | MR

[8] A. Yu. Khrennikov, Phys. Let. A, 357:3 (2006), 171–176 | DOI | MR | Zbl

[9] A. Yu. Khrennikov, Found. Phys. Lett., 19:4 (2006), 299–319 | DOI | MR | Zbl

[10] A. Yu. Khrennikov, Nuovo Cimento B, 121:5 (2006), 505–521, arXiv: hep-th/0604163 | DOI | MR

[11] A. Yu. Khrennikov, Europhys. Lett., 88:4 (2009), 40005, 6 pp. | DOI

[12] A. Yu. Khrennikov, Europhys. Lett., 90:4 (2010), 40004, 7 pp. | DOI

[13] A. Yu. Khrennikov, J. Russian Laser Research, 31:2 (2010), 191–200 | DOI

[14] A. Yu. Khrennikov, M. Ohya, N. Watanabe, J. Russian Laser Research, 31:5 (2010), 462–468 | DOI

[15] P. Grangier, Etude expérimentale de propriétés non-classiques de la lumière: interférence à un seul photon, Ph. D. thesis, Université de Paris-Sud, Centre D'Orsay, 1986

[16] R. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965 | MR | Zbl

[17] A. Yu. Khrennikov, Prog. Theor. Phys., 128:1 (2012), 31–58 | DOI | Zbl

[18] A. Yu. Khrennikov, B. Nilsson, S. Nordebo, J. Phys., 361:1 (2012), 012030, 11 pp., arXiv: 1112.5591 | DOI | MR

[19] V. S. Vladimirov, Methods of the Theory of Generalized Functions, Analytical Methods and Special Functions, 6, Taylor Francis, London, 2002 | MR | Zbl

[20] I. V. Volovich, Towards quantum information theory in space and time, arXiv: quant-ph/0203030

[21] A. Yu. Khrennikov, I. V. Volovich, “Quantum nonlocality, EPR model, and Bell`s theorem”, Proceedings of the 3rd International Sakharov Conference on Physics (Moscow, Russia, June 24–29, 2002), 2, eds. A. Semikhatov, M. Vasiliev, V. Zaikin, World Sci., Singapore, 2003, 269–276

[22] A. Yu. Khrennikov, I. Volovich, “Local realism, contextualism and loopholes in Bell`s experiments”, Foundations of Probability and Physics – 2 (Växjö, Sweden, June 2–7, 2002), Mathematical Modelling in Physics, Engineering and Cognitive Sciences, 5, ed. A. Yu. Khrennikov, Växjö Univ. Press, Växjö, 2003, 325–343 | MR

[23] A. Yu. Khrennikov, I. Volovich, Soft Computing – A Fusion of Foundations, Methodologies and Applications, 10:6 (2005), 521–529 | DOI

[24] A. Yu. Khrennikov, B. Nilsson, S. Nordebo, I. Volovich, “Distance dependence of entangled photons in waveguides”, Foundations of Probability and Physics – 6 (Växjö, Sweden, June 14–16, 2011), AIP Conference Proceedings, 1424, eds. M. D`Ariano, Sao-Ming Fei, E. Haven, B. Hiesmayr, G. Jaeger, A. Yu. Khrennikov, J.-Å. Larsson, AIP, Melville, NY, 2012, 325–343 | DOI

[25] A. Yu. Khrennikov, B. Nilsson, S. Nordebo, I. V. Volovich, Phys. Scr., 85:6 (2012), 065404 | DOI | MR | Zbl

[26] V. S. Vladimirov, I. V. Volovich, Dokl. AN SSSR, 276:3 (1984), 521–524 | MR | Zbl

[27] V. S. Vladimirov, I. V. Volovich, TMF, 59:1 (1984), 3–27 | MR | Zbl

[28] V. S. Vladimirov, I. V. Volovich, TMF, 60:2 (1984), 169–198 | DOI | MR | Zbl

[29] A. Yu. Khrennikov, Superanaliz, Fizmatlit, M., 2005 | MR | Zbl

[30] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | MR | Zbl

[31] V. S. Vladimirov, Izv. RAN. Ser. matem., 60:1 (1996), 63–86 | DOI | DOI | MR | Zbl

[32] V. S. Vladimirov, “$p$-Adic numbers in mathematical physics”, Advanced Mathematics: Computations and Applications (Novosibirsk, 1995), NCC Publ., Novosibirsk, 1995, 128–141 | MR

[33] V. S. Vladimirov, “O razvetvlennykh kharakterakh gruppy idelei odnoklassnykh kvadratichnykh polei”, Algebra. Topologiya. Differentsialnye uravneniya i ikh prilozheniya, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Lva Semenovicha Pontryagina, Tr. MIAN, 224, Nauka, M., 1999, 122–129 | MR | Zbl

[34] V. S. Vladimirov, “Adelnye formuly dlya gamma- i beta-funktsii odnoklassnykh kvadratichnykh polei. Primeneniya k 4-chastichnym strunnym amplitudam rasseyaniya”, Problemy sovremennoi matematicheskoi fiziki, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Nikolaya Nikolaevicha Bogolyubova, Tr. MIAN, 228, Nauka, M., 2000, 76–89 | MR | Zbl

[35] A. Yu. Khrennikov, $p$-Adic Valued Distributions in Mathematical Physics, Mathematics and its Applications (Dordrecht), 309, Kluwer, Dordrecht, 1994 | MR | Zbl

[36] A. Yu. Khrennikov, Nearkhimedov analiz i ego primeneniya, Nauka, M., 2003 | MR | Zbl

[37] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl

[38] A. E. Allahverdyan, A. Yu. Khrennikov, Th. M. Nieuwenhuizen, Phys. Rev. A, 72:3 (2005), 032102, 14 pp., arXiv: quant-ph/0412132 | DOI | MR

[39] L. De la Peña, A. Cetto, The Quantum Dice: An Introduction to Stochastic Electrodynamics, Kluwer, Dordrecht, 1996 | MR

[40] Th. M. Nieuwenhuizen, V. Špička, B. Mehmani, M. J. Aghdami, A. Yu. Khrennikov (eds.), Beyond the Quantum, World Sci., Singapore, 2007

[41] G. Grössing, J. M. Pascasio, H. Schwabl, Found. Phys., 41:9 (2011), 1437–1453, arXiv: 0812.3561 | DOI | MR | Zbl

[42] Th. Nieuwenhuizen, “Classical phase space density for relativistic hydrogen atom”, Quantum Theory: Reconsideration of Foundations – 3 (Växjö, Sweden, June 6–11, 2005), AIP Conference Proceedings, 810, eds. G. Adenier, A. Yu. Khrennikov, Th. M. Nieuwenhuizen, AIP, Melville, NY, 2006, 198–210, arXiv: quant-ph/0511144 | DOI | MR | Zbl

[43] W. A. Hofer, Found. Phys., 41:4 (2011), 754–791, arXiv: 1002.3468 | DOI | MR | Zbl

[44] H. De Raedt, K. De Raedt, K. Michielsen, Europhys. Lett., 69:6 (2005), 861–867 | DOI

[45] K.-E. Eriksson, “Reduction of the wave-packet can be understood within quantum mechanics”, Foundations of Probability and Physics – 6 (Växjö, Sweden, June 14–16, 2011), AIP Conference Proceedings, 1424, eds. M. D`Ariano, Sao-Ming Fei, E. Haven, B. Hiesmayr, G. Jaeger, A. Yu. Khrennikov, J.-Å. Larsson, AIP, Melville, NY, 2012, 325–343 | DOI