@article{TMF_2013_174_2_a13,
author = {A. Yu. Khrennikov and B. Nilsson and S. Nordebo},
title = {Quantum rule for detection probability from {Brownian} motion in the~space of classical fields},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {342--352},
year = {2013},
volume = {174},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a13/}
}
TY - JOUR AU - A. Yu. Khrennikov AU - B. Nilsson AU - S. Nordebo TI - Quantum rule for detection probability from Brownian motion in the space of classical fields JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 342 EP - 352 VL - 174 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a13/ LA - ru ID - TMF_2013_174_2_a13 ER -
%0 Journal Article %A A. Yu. Khrennikov %A B. Nilsson %A S. Nordebo %T Quantum rule for detection probability from Brownian motion in the space of classical fields %J Teoretičeskaâ i matematičeskaâ fizika %D 2013 %P 342-352 %V 174 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a13/ %G ru %F TMF_2013_174_2_a13
A. Yu. Khrennikov; B. Nilsson; S. Nordebo. Quantum rule for detection probability from Brownian motion in the space of classical fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 342-352. http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a13/
[1] M. Born, Z. Phys., 37:12 (1926), 863–867 | DOI | Zbl
[2] N. P. Landsman, “Algebraic quantum mechanics”, Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, eds. D. Greenberger, K. Hentschel, F. Weinert, and B. Falkenburg, Springer, Berlin, 2009, 6–9 ; “The Born rule and its interpretation”, Op. cit., 64–70; “Quantization (systematic)”, Op. cit., 510–513; “Quasi-classical limit”, Op. cit., 626–629 | DOI | Zbl
[3] G. 't Hooft, Quantum gravity as a dissipative deterministic system, arXiv: gr-qc/9903084 | MR
[4] G. 't Hooft, The mathematical basis for deterministic quantum mechanics, arXiv: quant-ph/0604008
[5] G. 't Hooft, Her. Russ. Acad. Sci., 81:10 (2011), 907–911, arXiv: quant-ph/0701097
[6] A. Yu. Khrennikov, J. Phys. A, 38:41 (2005), 9051–9073, arXiv: quant-ph/0505228 | DOI | MR | Zbl
[7] A. Yu. Khrennikov, Found. Phys. Lett., 18:7 (2006), 637–650 | DOI | MR
[8] A. Yu. Khrennikov, Phys. Let. A, 357:3 (2006), 171–176 | DOI | MR | Zbl
[9] A. Yu. Khrennikov, Found. Phys. Lett., 19:4 (2006), 299–319 | DOI | MR | Zbl
[10] A. Yu. Khrennikov, Nuovo Cimento B, 121:5 (2006), 505–521, arXiv: hep-th/0604163 | DOI | MR
[11] A. Yu. Khrennikov, Europhys. Lett., 88:4 (2009), 40005, 6 pp. | DOI
[12] A. Yu. Khrennikov, Europhys. Lett., 90:4 (2010), 40004, 7 pp. | DOI
[13] A. Yu. Khrennikov, J. Russian Laser Research, 31:2 (2010), 191–200 | DOI
[14] A. Yu. Khrennikov, M. Ohya, N. Watanabe, J. Russian Laser Research, 31:5 (2010), 462–468 | DOI
[15] P. Grangier, Etude expérimentale de propriétés non-classiques de la lumière: interférence à un seul photon, Ph. D. thesis, Université de Paris-Sud, Centre D'Orsay, 1986
[16] R. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965 | MR | Zbl
[17] A. Yu. Khrennikov, Prog. Theor. Phys., 128:1 (2012), 31–58 | DOI | Zbl
[18] A. Yu. Khrennikov, B. Nilsson, S. Nordebo, J. Phys., 361:1 (2012), 012030, 11 pp., arXiv: 1112.5591 | DOI | MR
[19] V. S. Vladimirov, Methods of the Theory of Generalized Functions, Analytical Methods and Special Functions, 6, Taylor Francis, London, 2002 | MR | Zbl
[20] I. V. Volovich, Towards quantum information theory in space and time, arXiv: quant-ph/0203030
[21] A. Yu. Khrennikov, I. V. Volovich, “Quantum nonlocality, EPR model, and Bell`s theorem”, Proceedings of the 3rd International Sakharov Conference on Physics (Moscow, Russia, June 24–29, 2002), 2, eds. A. Semikhatov, M. Vasiliev, V. Zaikin, World Sci., Singapore, 2003, 269–276
[22] A. Yu. Khrennikov, I. Volovich, “Local realism, contextualism and loopholes in Bell`s experiments”, Foundations of Probability and Physics – 2 (Växjö, Sweden, June 2–7, 2002), Mathematical Modelling in Physics, Engineering and Cognitive Sciences, 5, ed. A. Yu. Khrennikov, Växjö Univ. Press, Växjö, 2003, 325–343 | MR
[23] A. Yu. Khrennikov, I. Volovich, Soft Computing – A Fusion of Foundations, Methodologies and Applications, 10:6 (2005), 521–529 | DOI
[24] A. Yu. Khrennikov, B. Nilsson, S. Nordebo, I. Volovich, “Distance dependence of entangled photons in waveguides”, Foundations of Probability and Physics – 6 (Växjö, Sweden, June 14–16, 2011), AIP Conference Proceedings, 1424, eds. M. D`Ariano, Sao-Ming Fei, E. Haven, B. Hiesmayr, G. Jaeger, A. Yu. Khrennikov, J.-Å. Larsson, AIP, Melville, NY, 2012, 325–343 | DOI
[25] A. Yu. Khrennikov, B. Nilsson, S. Nordebo, I. V. Volovich, Phys. Scr., 85:6 (2012), 065404 | DOI | MR | Zbl
[26] V. S. Vladimirov, I. V. Volovich, Dokl. AN SSSR, 276:3 (1984), 521–524 | MR | Zbl
[27] V. S. Vladimirov, I. V. Volovich, TMF, 59:1 (1984), 3–27 | MR | Zbl
[28] V. S. Vladimirov, I. V. Volovich, TMF, 60:2 (1984), 169–198 | DOI | MR | Zbl
[29] A. Yu. Khrennikov, Superanaliz, Fizmatlit, M., 2005 | MR | Zbl
[30] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | MR | Zbl
[31] V. S. Vladimirov, Izv. RAN. Ser. matem., 60:1 (1996), 63–86 | DOI | DOI | MR | Zbl
[32] V. S. Vladimirov, “$p$-Adic numbers in mathematical physics”, Advanced Mathematics: Computations and Applications (Novosibirsk, 1995), NCC Publ., Novosibirsk, 1995, 128–141 | MR
[33] V. S. Vladimirov, “O razvetvlennykh kharakterakh gruppy idelei odnoklassnykh kvadratichnykh polei”, Algebra. Topologiya. Differentsialnye uravneniya i ikh prilozheniya, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Lva Semenovicha Pontryagina, Tr. MIAN, 224, Nauka, M., 1999, 122–129 | MR | Zbl
[34] V. S. Vladimirov, “Adelnye formuly dlya gamma- i beta-funktsii odnoklassnykh kvadratichnykh polei. Primeneniya k 4-chastichnym strunnym amplitudam rasseyaniya”, Problemy sovremennoi matematicheskoi fiziki, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Nikolaya Nikolaevicha Bogolyubova, Tr. MIAN, 228, Nauka, M., 2000, 76–89 | MR | Zbl
[35] A. Yu. Khrennikov, $p$-Adic Valued Distributions in Mathematical Physics, Mathematics and its Applications (Dordrecht), 309, Kluwer, Dordrecht, 1994 | MR | Zbl
[36] A. Yu. Khrennikov, Nearkhimedov analiz i ego primeneniya, Nauka, M., 2003 | MR | Zbl
[37] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl
[38] A. E. Allahverdyan, A. Yu. Khrennikov, Th. M. Nieuwenhuizen, Phys. Rev. A, 72:3 (2005), 032102, 14 pp., arXiv: quant-ph/0412132 | DOI | MR
[39] L. De la Peña, A. Cetto, The Quantum Dice: An Introduction to Stochastic Electrodynamics, Kluwer, Dordrecht, 1996 | MR
[40] Th. M. Nieuwenhuizen, V. Špička, B. Mehmani, M. J. Aghdami, A. Yu. Khrennikov (eds.), Beyond the Quantum, World Sci., Singapore, 2007
[41] G. Grössing, J. M. Pascasio, H. Schwabl, Found. Phys., 41:9 (2011), 1437–1453, arXiv: 0812.3561 | DOI | MR | Zbl
[42] Th. Nieuwenhuizen, “Classical phase space density for relativistic hydrogen atom”, Quantum Theory: Reconsideration of Foundations – 3 (Växjö, Sweden, June 6–11, 2005), AIP Conference Proceedings, 810, eds. G. Adenier, A. Yu. Khrennikov, Th. M. Nieuwenhuizen, AIP, Melville, NY, 2006, 198–210, arXiv: quant-ph/0511144 | DOI | MR | Zbl
[43] W. A. Hofer, Found. Phys., 41:4 (2011), 754–791, arXiv: 1002.3468 | DOI | MR | Zbl
[44] H. De Raedt, K. De Raedt, K. Michielsen, Europhys. Lett., 69:6 (2005), 861–867 | DOI
[45] K.-E. Eriksson, “Reduction of the wave-packet can be understood within quantum mechanics”, Foundations of Probability and Physics – 6 (Växjö, Sweden, June 14–16, 2011), AIP Conference Proceedings, 1424, eds. M. D`Ariano, Sao-Ming Fei, E. Haven, B. Hiesmayr, G. Jaeger, A. Yu. Khrennikov, J.-Å. Larsson, AIP, Melville, NY, 2012, 325–343 | DOI