Nonexistence of solutions of the~$p$-adic strings
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 208-215

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss mathematical aspects of the nonexistence of continuous (nontrivial) solutions of boundary value problems for equations of $p$-adic closed and open strings in the one-dimensional case. We find that the number of sign changes of the solution $\psi(t)$ is not equal to the order of zeros of the function $\psi^n(t)$ and that nonnegative (nonpositive) solutions do not exist. In the case of even $n$, if a solution $\psi$ exists, then the orders of zeros of the function $\psi^n$ and the order of its tangency to positive maximums (minimums) are not divisible by four and therefore have the form $2(2r+1)$, $r\ge0$.
Keywords: $p$-adic string, tachyon, pseudodifferential operator.
@article{TMF_2013_174_2_a1,
     author = {V. S. Vladimirov},
     title = {Nonexistence of solutions of the~$p$-adic strings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {208--215},
     publisher = {mathdoc},
     volume = {174},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a1/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Nonexistence of solutions of the~$p$-adic strings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 208
EP  - 215
VL  - 174
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a1/
LA  - ru
ID  - TMF_2013_174_2_a1
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Nonexistence of solutions of the~$p$-adic strings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 208-215
%V 174
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a1/
%G ru
%F TMF_2013_174_2_a1
V. S. Vladimirov. Nonexistence of solutions of the~$p$-adic strings. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 2, pp. 208-215. http://geodesic.mathdoc.fr/item/TMF_2013_174_2_a1/