Properties of maximums of the multiplicity function
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 1, pp. 99-108
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We redefine the multiplicity function $M(\nu,p)$ for the tensor power $(L^{\omega})^{\otimes p}$ decomposition as a smooth function on the weight space $P_{\mathfrak{g}}$ of a Lie algebra $\mathfrak{g}$ and study the behavior of its maximums. As a result, the submodule with the maximum multiplicity can be easily found for any fixed power $p$.
Keywords: Lie algebra, representation theory, tensor power, integrable model.
@article{TMF_2013_174_1_a6,
     author = {V. D. Lyakhovsky},
     title = {Properties of maximums of the~multiplicity function},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {99--108},
     year = {2013},
     volume = {174},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a6/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
TI  - Properties of maximums of the multiplicity function
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 99
EP  - 108
VL  - 174
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a6/
LA  - ru
ID  - TMF_2013_174_1_a6
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%T Properties of maximums of the multiplicity function
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 99-108
%V 174
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a6/
%G ru
%F TMF_2013_174_1_a6
V. D. Lyakhovsky. Properties of maximums of the multiplicity function. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 1, pp. 99-108. http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a6/

[1] S. Kumar, “Tensor product decomposition”, Proceedings of the International Congress of Mathematicians (Hyderabad, August 19–27, 2010), v. 3, eds. R. Bhatia, A. Pal, G. Rangarajan, V. Srinivas, M. Vanninathan, Hindustan Book Agency, New Delhi, 2010, 1226–1261 | MR

[2] A. N. Kirillov, N. Yu. Reshetikhin, Zap. nauchn. sem. POMI, 205 (1993), 30–37 | DOI | MR | Zbl

[3] M. Kleber, Internat. Math. Res. Notices, 4 (1997), 187–201, arXiv: q-alg/9611032 | DOI | MR | Zbl

[4] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, “Remarks on fermionic formula”, Recent Developments in Quantum Affine Algebras and Related Topics, Proceedings of the International Conference on Representations of Affine and Quantum Affine Algebras and Their Applications (Raleigh, NC, USA, May 21–24, 1998), Contemporary Mathematics, 248, eds. N. Jing, K. Misra, AMS, Providence, RI, 1999, 243–291, arXiv: math/9812022 | DOI | MR | Zbl

[5] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, “Combinatorial $R$-matrices for a family of crystals: $B_n(1)$, $D_n(1)$, $A_{2n}(2)$ and $D_{n+1}(2)$ cases”, Physical Combinatorics, Proceedings of a Workshop (Kyoto, Japan, January 29 – February 2, 1999), Progress in Mathematics, 191, eds. M. Kashiwara, T. Miwa, Birkhäuser, Boston, 2000, 105–139, arXiv: math/0012247 | MR | Zbl

[6] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi, “Paths, crystals and fermionic Formulae”, MathPhys Odyssey 2001, Integrable models and beyond. In honor of Barry M. McCoy, dedicated to his 60th birthday, Progress in Mathematical Physics, 23, eds. M. Kashiwara, T. Miwa, Birkhäuser, Boston, 2002, 205–272, arXiv: math/0102113 | MR | Zbl

[7] M. Kleber, Finite dimensional representations of quantum affine algebras, Ph. D. Thesis, University of California, Berkeley, 1998, arXiv: math/9809087 | MR

[8] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, J. Phys. A, 343:1 (2012), 012070, 9 pp. | DOI

[9] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, J. Phys. A, 343:1 (2012), 012095, 7 pp. | DOI

[10] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, J. Phys. A, 346:1 (2012), 012012, 15 pp., arXiv: 1106.2002 | DOI

[11] P. P. Kulish, V. D. Lyakhovskii, O. V. Postnova, TMF, 171:2 (2012), 283–293 | DOI | Zbl