@article{TMF_2013_174_1_a6,
author = {V. D. Lyakhovsky},
title = {Properties of maximums of the~multiplicity function},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {99--108},
year = {2013},
volume = {174},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a6/}
}
V. D. Lyakhovsky. Properties of maximums of the multiplicity function. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 1, pp. 99-108. http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a6/
[1] S. Kumar, “Tensor product decomposition”, Proceedings of the International Congress of Mathematicians (Hyderabad, August 19–27, 2010), v. 3, eds. R. Bhatia, A. Pal, G. Rangarajan, V. Srinivas, M. Vanninathan, Hindustan Book Agency, New Delhi, 2010, 1226–1261 | MR
[2] A. N. Kirillov, N. Yu. Reshetikhin, Zap. nauchn. sem. POMI, 205 (1993), 30–37 | DOI | MR | Zbl
[3] M. Kleber, Internat. Math. Res. Notices, 4 (1997), 187–201, arXiv: q-alg/9611032 | DOI | MR | Zbl
[4] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, “Remarks on fermionic formula”, Recent Developments in Quantum Affine Algebras and Related Topics, Proceedings of the International Conference on Representations of Affine and Quantum Affine Algebras and Their Applications (Raleigh, NC, USA, May 21–24, 1998), Contemporary Mathematics, 248, eds. N. Jing, K. Misra, AMS, Providence, RI, 1999, 243–291, arXiv: math/9812022 | DOI | MR | Zbl
[5] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, “Combinatorial $R$-matrices for a family of crystals: $B_n(1)$, $D_n(1)$, $A_{2n}(2)$ and $D_{n+1}(2)$ cases”, Physical Combinatorics, Proceedings of a Workshop (Kyoto, Japan, January 29 – February 2, 1999), Progress in Mathematics, 191, eds. M. Kashiwara, T. Miwa, Birkhäuser, Boston, 2000, 105–139, arXiv: math/0012247 | MR | Zbl
[6] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi, “Paths, crystals and fermionic Formulae”, MathPhys Odyssey 2001, Integrable models and beyond. In honor of Barry M. McCoy, dedicated to his 60th birthday, Progress in Mathematical Physics, 23, eds. M. Kashiwara, T. Miwa, Birkhäuser, Boston, 2002, 205–272, arXiv: math/0102113 | MR | Zbl
[7] M. Kleber, Finite dimensional representations of quantum affine algebras, Ph. D. Thesis, University of California, Berkeley, 1998, arXiv: math/9809087 | MR
[8] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, J. Phys. A, 343:1 (2012), 012070, 9 pp. | DOI
[9] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, J. Phys. A, 343:1 (2012), 012095, 7 pp. | DOI
[10] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, J. Phys. A, 346:1 (2012), 012012, 15 pp., arXiv: 1106.2002 | DOI
[11] P. P. Kulish, V. D. Lyakhovskii, O. V. Postnova, TMF, 171:2 (2012), 283–293 | DOI | Zbl