Correlation functions and spectral curves in models of minimal gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 1, pp. 90-98
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss correlators for models of minimal gravity and propose an algorithm for calculating invariant relations from formulas for residues that can be compared with the expansion coefficients for the partition function in the Liouville theory. For $(2,2K-1)$ models, we explicitly obtain a factor corresponding to conversion from the semiclassical hierarchy basis to the Liouville theory basis and also test a hypothesis about the pattern of the spectral curve using a direct calculation.
Keywords: generating function, Liouville theory, integrable system, correlation function.
@article{TMF_2013_174_1_a5,
     author = {O. S. Kruglinskaya},
     title = {Correlation functions and spectral curves in models of minimal gravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {90--98},
     year = {2013},
     volume = {174},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a5/}
}
TY  - JOUR
AU  - O. S. Kruglinskaya
TI  - Correlation functions and spectral curves in models of minimal gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 90
EP  - 98
VL  - 174
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a5/
LA  - ru
ID  - TMF_2013_174_1_a5
ER  - 
%0 Journal Article
%A O. S. Kruglinskaya
%T Correlation functions and spectral curves in models of minimal gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 90-98
%V 174
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a5/
%G ru
%F TMF_2013_174_1_a5
O. S. Kruglinskaya. Correlation functions and spectral curves in models of minimal gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 1, pp. 90-98. http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a5/

[1] G. 't Hooft, Nucl. Phys. B, 72:3 (1974), 461–473 | DOI

[2] A. V. Marshakov, TMF, 147:2 (2006), 163–228 | DOI | MR | Zbl

[3] I. M. Krichever, Commun. Pure Appl. Math., 47:4 (1994), 437–475, arXiv: hep-th/9205110 | DOI | MR | Zbl

[4] A. Gorsky, I. M. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355:3–4 (1995), 466–474, arXiv: hep-th/9505035 | DOI | MR | Zbl

[5] A. Marshakov, Seiberg–Witten Theory and Integrable Systems, World Scientific, Singapore, 1999 ; “Seiberg–Witten curves and integrable systems”, Integrability: The Seiberg–Witten and Whitham Equations, eds. H. W. Braden, I. M Krichever, Gordon and Breach, Amsterdam, 2000, 69–91 | MR | Zbl | MR | Zbl

[6] S. M. Kharchev, A. V. Marshakov, A. D. Mironov, A. Yu. Morozov, TMF, 95:2 (1993), 280–292, arXiv: hep-th/9208046 | DOI | MR | Zbl

[7] A. A. Migdal, Phys. Rep., 102:4 (1983), 199–290 | DOI

[8] V. A. Kazakov, Modern Phys. Lett. A, 4:22 (1989), 2125–2139 ; E. Brézin, V. A. Kazakov, Phys. Lett. B, 236:2 (1990), 144–150 ; M. R. Douglas, S. H. Shenker, Nucl. Phys. B, 335:3 (1990), 635–654 ; D. Gross, A. Migdal, Phys. Rev. Lett., 64:2 (1990), 127–130 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl

[9] Yu. Makeenko, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. B, 356:3 (1991), 574–628 | DOI | MR

[10] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[11] A. M. Polyakov, Phys. Lett. B, 103:3 (1981), 207–210 | DOI | MR

[12] N. Seiberg, D. Shih, JHEP, 02 (2004), 021, 61 pp., arXiv: ; C. R. Physique, 6:2 (2005), 165–174, arXiv: hep-th/0312170hep-th/0409306 | DOI | DOI | MR

[13] A. A. Belavin, A. B. Zamolodchikov, J. Phys. A, 42:30 (2009), 304004, 18 pp., arXiv: 0811.0450 | DOI | MR | Zbl

[14] G. Moore, N. Seiberg, M. Staudacher, Nucl. Phys. B, 362:3 (1991), 665–709 | DOI | MR

[15] Al. Zamolodchikov, Internat. J. Modern Phys. A, 19:supp02 (2004), 510–523, arXiv: hep-th/0312279 | DOI | MR | Zbl

[16] A. Marshakov, J. Phys. A, 42:30 (2009), 304021, 16 pp. | DOI | MR | Zbl