The master $T$-operator for vertex models with trigonometric $R$-matrices as a classical $\tau$-function
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 1, pp. 59-76
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the recently proposed construction of the master $T$-operator to integrable vertex models and the associated quantum spin chains with trigonometric $R$-matrices. The master $T$-operator is a generating function for commuting transfer matrices of integrable vertex models depending on infinitely many parameters. It also turns out to be the $\tau$-function of an integrable hierarchy of classical soliton equations in the sense that it satisfies the same bilinear Hirota equations. We characterize the class of solutions of the Hirota equations that correspond to eigenvalues of the master $T$-operator and discuss its relation to the classical Ruijsenaars–Schneider system of particles.
Keywords: integrable vertex model, $\tau$-function.
Mots-clés : $R$-matrix, transfer matrix
@article{TMF_2013_174_1_a3,
     author = {A. V. Zabrodin},
     title = {The~master $T$-operator for vertex models with trigonometric $R$-matrices as a~classical $\tau$-function},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {59--76},
     year = {2013},
     volume = {174},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a3/}
}
TY  - JOUR
AU  - A. V. Zabrodin
TI  - The master $T$-operator for vertex models with trigonometric $R$-matrices as a classical $\tau$-function
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 59
EP  - 76
VL  - 174
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a3/
LA  - ru
ID  - TMF_2013_174_1_a3
ER  - 
%0 Journal Article
%A A. V. Zabrodin
%T The master $T$-operator for vertex models with trigonometric $R$-matrices as a classical $\tau$-function
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 59-76
%V 174
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a3/
%G ru
%F TMF_2013_174_1_a3
A. V. Zabrodin. The master $T$-operator for vertex models with trigonometric $R$-matrices as a classical $\tau$-function. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 1, pp. 59-76. http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a3/

[1] A. Alexandrov, V. Kazakov, S. Leurent, Z. Tsuboi, A. Zabrodin, Classical tau-function for quantum spin chains, arXiv: 1112.3310 | MR

[2] I. Krichever, O. Lipan, P. Wiegmann, A. Zabrodin, Commun. Math. Phys., 188:2 (1997), 267–304, arXiv: hep-th/9604080 | DOI | MR | Zbl

[3] A. Zabrodin, Internat. J. Modern Phys. B, 11:26–27 (1997), 3125–3158, arXiv: ; А. В. Забродин, ТМФ, 116:1 (1998), 54–100 hep-th/9610039 | DOI | MR | Zbl | DOI | DOI | MR | Zbl

[4] V. Kazakov, A. S. Sorin, A. Zabrodin, Nucl. Phys. B, 790:3 (2008), 345–413, arXiv: hep-th/0703147 | DOI | MR | Zbl

[5] V. Kazakov, S. Leurent, Z. Tsuboi, Commun. Math. Phys., 311:3 (2012), 787–814, arXiv: 1010.4022 | DOI | MR | Zbl

[6] S. N. M. Ruijsenaars, H. Schneider, Ann. Phys., 170:2 (1986), 370–405 | DOI | MR | Zbl

[7] E. Mukhin, V. Tarasov, A. Varchenko, Algebra i analiz, 22:3 (2010), 177–190, arXiv: ; KZ characteristic variety as the zero set of classical Calogero–Moser Hamiltonians, arXiv: 0904.21311201.3990 | DOI | MR | Zbl

[8] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[9] M. Rosso, Commun. Math. Phys., 117:4 (1988), 581–593 | DOI | MR | Zbl

[10] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Springer, Berlin, 1997 | MR | Zbl

[11] D. Arnaudon, N. Crampé, A. Doikou, L. Frappat, E. Ragoucy, Ann. H. Poincaré, 7:7–8 (2006), 1217–1268, arXiv: math-ph/0512037 | DOI | MR | Zbl

[12] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl

[13] S. Khoroshkin, V. Tolstoy, Commun. Math. Phys., 141:3 (1991), 599–617 | DOI | MR | Zbl

[14] P. Kulish, N. Reshetikhin, E. Sklyanin, Lett. Math. Phys., 5:5 (1981), 393–403 | DOI | MR | Zbl

[15] I. V. Cherednik, Funkts. analiz i ego pril., 20:1 (1986), 87–88 | DOI | MR | Zbl

[16] I. V. Cherednik, Funkts. analiz i ego pril., 21:2 (1987), 94–95 | DOI | MR | Zbl

[17] V. V. Bazhanov, N. Reshetikhin, J. Phys. A, 23:9 (1990), 1477–1492 | DOI | MR | Zbl

[18] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[19] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory, Proceedings of RIMS Symposium (Kyoto, Japan, May 13–16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR | Zbl

[20] M. Jimbo, T. Miwa, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[21] R. Hirota, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR

[22] T. Miwa, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR | Zbl

[23] T. Takebe, L.-P. Teo, SIGMA, 2 (2006), 072, 30 pp. | DOI | MR | Zbl

[24] A. Orlov, T. Shiota, Phys. Lett. A, 343:5 (2005), 384–396, arXiv: ; Дж. Харнад, В. З. Энольский, УМН, 66:4(400) (2011), 137–178 math-ph/0501017 | DOI | MR | Zbl | DOI | DOI | MR

[25] I. M. Krichever, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | DOI | MR | Zbl

[26] I. M. Krichever, A. V. Zabrodin, UMN, 50:6(306) (1995), 3–56 | DOI | MR | Zbl

[27] I. M. Krichever, Zap. nauchn. semin. LOMI, 84 (1979), 117–130 ; Б. А. Дубровин, Т. М. Маланюк, И. М. Кричевер, В. Г. Маханьков, ЭЧАЯ, 19:3 (1988), 579–621 | DOI | Zbl | MR

[28] Y. Ohta, R. Hirota, S. Tsujimoto, T. Imai, J. Phys. Soc. Japan, 62:6 (1993), 1872–1886 | DOI | MR | Zbl

[29] I. M. Krichever, UMN, 32:6(198) (1977), 183–208 | MR | Zbl