Universal integrability objects
Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 1, pp. 25-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the main points of the quantum group approach in the theory of quantum integrable systems and illustrate them for the case of the quantum group $U_q(\mathcal L(\mathfrak{sl}_2))$. We give a complete set of the functional relations correcting inexactitudes in the previous considerations. We especially attend to the interrelation of the representations used to construct the universal transfer operators and $Q$-operators.
Keywords: integrable system, quantum group, representation, functional relation.
@article{TMF_2013_174_1_a1,
     author = {H. Boos and F. Gohmann and A. Kl\"umper and Kh. Nirov and A. V. Razumov},
     title = {Universal integrability objects},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {25--45},
     year = {2013},
     volume = {174},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a1/}
}
TY  - JOUR
AU  - H. Boos
AU  - F. Gohmann
AU  - A. Klümper
AU  - Kh. Nirov
AU  - A. V. Razumov
TI  - Universal integrability objects
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 25
EP  - 45
VL  - 174
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a1/
LA  - ru
ID  - TMF_2013_174_1_a1
ER  - 
%0 Journal Article
%A H. Boos
%A F. Gohmann
%A A. Klümper
%A Kh. Nirov
%A A. V. Razumov
%T Universal integrability objects
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 25-45
%V 174
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a1/
%G ru
%F TMF_2013_174_1_a1
H. Boos; F. Gohmann; A. Klümper; Kh. Nirov; A. V. Razumov. Universal integrability objects. Teoretičeskaâ i matematičeskaâ fizika, Tome 174 (2013) no. 1, pp. 25-45. http://geodesic.mathdoc.fr/item/TMF_2013_174_1_a1/

[1] V. G. Drinfel'd, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, California, August 3–11, 1986), v. 1, ed. A. M. Gleason, AMS, Providence, RI, 1988, 798–820 | MR

[2] M. Jimbo, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR | Zbl

[3] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, Commun. Math. Phys., 177:2 (1996), 381–398, arXiv: hep-th/9412229 | DOI | MR | Zbl

[4] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, Commun. Math. Phys., 190:2 (1997), 247–278, arXiv: hep-th/9604044 | DOI | MR | Zbl

[5] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, Commun. Math. Phys., 200:2 (1999), 297–324, arXiv: hep-th/9805008 | DOI | MR | Zbl

[6] A. Antonov, B. Feigin, Phys. Lett. B, 392:1–2 (1997), 115–122, arXiv: hep-th/9603105 | MR

[7] V. V. Bazhanov, Z. Tsuboi, Nucl. Phys. B, 805:3 (2008), 451–516, arXiv: 0805.4274 | DOI | MR | Zbl

[8] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, Universal ${R}$-matrix and functional relations, arXiv: 1205.1631

[9] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl

[10] M. Jimbo, T. Miwa, “Algebraic Analysis of Solvable Lattice Models”, CBMS Regional Conference Series in Mathematics, 85, AMS, Providence, RI, 1985 | MR

[11] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[12] P. I. Etingof, I. B. Frenkel, A. A. Kirillov (Jr.), Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations, Mathematical Surveys and Monographs, 58, AMS, Providence, RI, 1998 | DOI | MR | Zbl

[13] M. Rosso, Commun. Math. Phys., 124:2 (1989), 307–318 | DOI | MR | Zbl

[14] A. N. Kirillov, N. Reshetikhin, Commun. Math. Phys., 134:2 (1990), 421–431 | DOI | MR | Zbl

[15] S. Z. Levenderovskiĭ, Ya. S. Soibelman, J. Geom. Phys., 7:2 (1990), 241–254 | DOI | MR

[16] V. N. Tolstoi, S. M. Khoroshkin, Funkts. analiz i ego pril., 26:1 (1992), 85–88 | MR | Zbl

[17] S. M. Khoroshkin, V. N. Tolstoy, Lett. Math. Phys., 24:3 (1992), 231–244 | DOI | MR | Zbl

[18] S. Levenderovskii, Y. Soibelman, V. Stukopin, Lett. Math. Phys., 27:4 (1993), 253–264 | DOI | MR

[19] Y.-Z. Zhang, M. D. Gould, Lett. Math. Phys., 31:2 (1994), 101–110, arXiv: hep-th/9307007 | DOI | MR | Zbl

[20] A. J. Bracken, M. D. Gould, Y.-Z. Zhang, G. W. Delius, Internat. J. Modern Phys. B, 8 (1994), 3679–3691, arXiv: hep-th/9310183 | DOI | MR

[21] A. J. Bracken, M. D. Gould, Y.-Z. Zhang, Bull. Austral. Math. Soc., 51:2 (1995), 177–194 | DOI | MR | Zbl

[22] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, J. Phys. A, 43:41 (2010), 415208, 35 pp., arXiv: 1004.5342 | DOI | MR | Zbl

[23] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, J. Phys. A, 44:35 (2011), 355202, 25 pp., arXiv: 1104.5696 | DOI | MR | Zbl

[24] V. V. Bazhanov, A. N. Hibberd, S. M. Khoroshkin, Nucl. Phys. B, 622:3 (2002), 475–574, arXiv: hep-th/0105177 | DOI | MR

[25] D. Hernandez, M. Jimbo, Compos. Math., 148:5 (2012), 1593–1623, arXiv: 1104.1891 | DOI | MR | Zbl

[26] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Springer, Berlin, 1997 | MR | Zbl

[27] M. Jimbo, Lett. Math. Phys., 11:3 (1986), 247–252 | DOI | MR | Zbl

[28] V. V. Bazhanov, T. Łukowski, C. Meneghelli, M. Staudacher, J. Stat. Mech., 2010 (2010), P11002, 37 pp., arXiv: 1005.3261 | DOI

[29] M. Rossi, R. Weston, J. Phys. A, 35:47 (2002), 10015–10032, arXiv: math-ph/0207004 | DOI | MR | Zbl

[30] A. V. Antonov, TMF, 113:3 (1997), 384–396, arXiv: hep-th/9607031 | DOI | DOI | MR | Zbl

[31] H. Boos, M. Jimbo, T. Miwa, F. Smirnov, Y. Takeyama, Commun. Math. Phys., 286:3 (2009), 875–932, arXiv: 0801.1176 | DOI | MR | Zbl

[32] S. É. Derkachov, A. N. Manashov, J. Phys. A, 39:16 (2006), 4147–4159, arXiv: nlin/0512047 | DOI | MR | Zbl