Quantization of stationary Gaussian random processes and their generalizations
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 479-516
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider quantization of stationary Gaussian random processes whose physical counterparts are states of open systems in equilibrium with the environment. For this, we propose a formalism and its physical interpretation in accordance with the concept of Hamiltonian modeling. The method is universal and includes the known models as particular cases. We also consider extending the method applicability domain to linear systems with infrared singularities of two-point functions. In particular, fractal Brownian motions constitute a family of reference models in this class.
Keywords:
open system, Hamiltonian modeling, Gaussian flow, quasifree state of the algebra of canonical commutation relations, fractal Brownian motion.
@article{TMF_2012_173_3_a8, author = {A. I. Oksak}, title = {Quantization of stationary {Gaussian} random processes and their generalizations}, journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika}, pages = {479--516}, publisher = {mathdoc}, volume = {173}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a8/} }
TY - JOUR AU - A. I. Oksak TI - Quantization of stationary Gaussian random processes and their generalizations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 479 EP - 516 VL - 173 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a8/ LA - ru ID - TMF_2012_173_3_a8 ER -
A. I. Oksak. Quantization of stationary Gaussian random processes and their generalizations. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 479-516. http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a8/