Quantization of stationary Gaussian random processes and their generalizations
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 479-516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider quantization of stationary Gaussian random processes whose physical counterparts are states of open systems in equilibrium with the environment. For this, we propose a formalism and its physical interpretation in accordance with the concept of Hamiltonian modeling. The method is universal and includes the known models as particular cases. We also consider extending the method applicability domain to linear systems with infrared singularities of two-point functions. In particular, fractal Brownian motions constitute a family of reference models in this class.
Keywords: open system, Hamiltonian modeling, Gaussian flow, quasifree state of the algebra of canonical commutation relations, fractal Brownian motion.
@article{TMF_2012_173_3_a8,
     author = {A. I. Oksak},
     title = {Quantization of stationary {Gaussian} random processes and their generalizations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {479--516},
     year = {2012},
     volume = {173},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a8/}
}
TY  - JOUR
AU  - A. I. Oksak
TI  - Quantization of stationary Gaussian random processes and their generalizations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 479
EP  - 516
VL  - 173
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a8/
LA  - ru
ID  - TMF_2012_173_3_a8
ER  - 
%0 Journal Article
%A A. I. Oksak
%T Quantization of stationary Gaussian random processes and their generalizations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 479-516
%V 173
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a8/
%G ru
%F TMF_2012_173_3_a8
A. I. Oksak. Quantization of stationary Gaussian random processes and their generalizations. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 479-516. http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a8/

[1] G. W. Ford, M. Kac, P. Mazur, J. Math. Phys., 6:4 (1965), 504–515 | DOI | MR | Zbl

[2] P. Ullersma, Physica, 32:1 (1966), 27–55 ; 56–73 ; 74–89 ; 90–96 | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[3] J. T. Lewis, J. V. Pulè, “Dynamical theory of Brownian motion”, International Symposium on Mathematical Problems in Theoretical Physics (Kyoto, Japan, January 23–29, 1975), Lecture Notes in Physics, 39, ed. H. Araki, Springer, Berlin, 1975, 516–519 | DOI | MR

[4] D. T. Lyuis, G. Maasen, “Gamiltonovy modeli klassicheskikh i kvantovykh sluchainykh protsessov”, Kvantovye sluchainye protsessy i otkrytye sistemy, Mir, M., 1988, 53–91 | MR

[5] R. Benguria, M. Kac, Phys. Rev. Lett., 46:1 (1981), 1–4 | DOI | MR

[6] J. T. Lewis, L. C. Thomas, “How to make a heat bath”, Functional Integration and Its Applications, Proceedings of the International Conference (Cumberland Lodge, London, April 1974), ed. A. M. Arthurs, Clarendon Press, Oxford, 1975, 93–123 | MR | Zbl

[7] Th. M. Nieuwenhuizen, A. E. Allahverdyan, Phys. Rev. E, 66:3 (2002), 036102, 52 pp. | DOI

[8] G. W. Ford, J. T. Lewis, R. F. O'Connell, Phys. Rev. A, 37:11 (1988), 4419–4428 | DOI | MR

[9] H. Dekker, Phys. Rep., 80:1 (1981), 1–110 | DOI | MR

[10] R. F. Feynman, F. L. Vernon, Ann. Phys., 24:1 (1963), 118–173 | DOI | MR

[11] A. O. Caldeira, A. J. Leggett, Ann. Phys., 149:2 (1983), 374–456 | DOI

[12] H. Grabert,P. Schramm, G.-L. Ingold, Phys. Rep., 168:3 (1988), 115–207 | DOI | MR

[13] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[14] A. I. Oksak, A. D. Sukhanov, TMF, 136:1 (2003), 115–147 | DOI | MR | Zbl

[15] Yu. G. Rudoi, A. D. Sukhanov, UFN, 170:12 (2000), 1265–1296 | DOI

[16] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 5, Statisticheskaya fizika, Nauka, M., 1976 | MR | Zbl

[17] A. Messia, Kvantovaya mekhanika, v. 1, Nauka, M., 1978 | MR | Zbl

[18] J. Manuceau, A. Verbeure, Commun. Math. Phys., 9:4 (1968), 293–302 | DOI | MR | Zbl

[19] J. Manuceau, F. Rocca, D. Testard, Commun. Math. Phys., 12:1 (1969), 43–57 | DOI | MR | Zbl

[20] A. S. Kholevo, TMF, 6:1 (1971), 3–20 ; 6:2, 145–150 | DOI | MR | Zbl | MR | Zbl

[21] H. Araki, E. J. Woods, J. Math. Phys., 4:5 (1963), 637–662 | DOI | MR

[22] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR | Zbl

[23] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Fizmatgiz, M., 2006 | MR | Zbl

[24] A. I. Oksak, TMF, 48:3 (1981), 297–318 | DOI | MR

[25] A. Barut, R. Ronchka, Teoriya predstavlenii grupp i ee prilozheniya, T. 2, Mir, M., 1980 | MR | Zbl

[26] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR | Zbl

[27] I. Sigal, Matematicheskie problemy relyativistskoi fiziki, Mir, M., 1968 | MR | Zbl

[28] D. Kastler, Commun. Math. Phys., 1:1 (1965), 14–48 | DOI | MR | Zbl

[29] M. Nakamura, T. Turumaru, Tôhoku Math. J., 6:2–3 (1954), 182–188 | DOI | MR | Zbl

[30] P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Nauka, M., 1979 | MR