Classical Euclidean wormhole solutions in the Palatini $f(\widetilde R)$ cosmology
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 468-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the classical Euclidean wormholes in the context of extended theories of gravity. Without loss of generality, we use the dynamical equivalence between $f(\widetilde R)$ gravity and scalar–tensor theories to construct a pointlike Lagrangian in the flat Friedmann–Robertson–Walker space–time. We first show the dynamical equivalence between the Palatini $f(\widetilde R)$ gravity and the Brans–Dicke theory with a self-interaction potential and then show the dynamical equivalence between the Brans–Dicke theory with a self-interaction potential and the minimally coupled O'Hanlon theory. We show the existence of new Euclidean wormhole solutions for this O'Hanlon theory; in a special case, we find the corresponding form of $f(\widetilde R)$ that has a wormhole solution. For small values of the Ricci scalar, this $f(\widetilde R)$ agrees with the wormhole solution obtained for the higher-order gravity theory $\widetilde R+\epsilon \widetilde R^2$, $\epsilon<0$.
Keywords: Euclidean wormhole, $f(R)$ cosmology, scalar–tensor theory.
@article{TMF_2012_173_3_a7,
     author = {F. Darabi},
     title = {Classical {Euclidean} wormhole solutions in {the~Palatini} $f(\widetilde R)$ cosmology},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {468--478},
     year = {2012},
     volume = {173},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a7/}
}
TY  - JOUR
AU  - F. Darabi
TI  - Classical Euclidean wormhole solutions in the Palatini $f(\widetilde R)$ cosmology
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 468
EP  - 478
VL  - 173
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a7/
LA  - ru
ID  - TMF_2012_173_3_a7
ER  - 
%0 Journal Article
%A F. Darabi
%T Classical Euclidean wormhole solutions in the Palatini $f(\widetilde R)$ cosmology
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 468-478
%V 173
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a7/
%G ru
%F TMF_2012_173_3_a7
F. Darabi. Classical Euclidean wormhole solutions in the Palatini $f(\widetilde R)$ cosmology. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 468-478. http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a7/

[1] M. Visser, Lorentzian Wormholes: From Einstein to Hawking, AIP, Melville, NY, 1995 | MR

[2] S. W. Hawking, Phys. Rev. D, 37:4 (1988), 904–910 | DOI | MR

[3] S. Coleman, Nucl. Phys. B, 307:4 (1988), 867–882 | DOI | MR

[4] S. Coleman, Nucl. Phys. B, 310:3–4 (1988), 643–668 | DOI | MR | Zbl

[5] I. Klebanov, L. Susskind, T. Banks, Nucl. Phys. B, 317:3 (1989), 665–692 | DOI | MR

[6] S. Mignemi, I. Moss, Phys. Rev. D., 48:8 (1993), 3725–3730 | DOI | MR

[7] J. Cheeger, D. Grommol, Ann. Math., 96:3 (1972), 413–443 | DOI | MR | Zbl

[8] S. Giddings, A. Strominger, Nucl. Phys. B, 306:4 (1988), 890–907 | DOI | MR

[9] F. S. N. Lobo, M. A. Oliveira, Phys. Rev. D, 80:10 (2009), 104012, 9 pp., arXiv: 0909.5539 | DOI | MR

[10] A. G. Agnese, M. La Camera, Phys. Rev. D, 51:4 (1995), 2011–2013 | DOI

[11] K. K. Nandi, B. Bhattacharjee, S. M. K. Alam, J. Evans, Phys. Rev. D, 57:2 (1998), 823–828 | DOI | MR

[12] C. G. Boehmer, T. Harko, F. S. N. Lobo, Phys. Rev. D, 85:4 (2012), 044033, 8 pp., arXiv: 1110.5756 | DOI

[13] S. Capozziello, M. Francaviglia, Gen. Relativity Gravitation, 40:2–3 (2008), 357–420, arXiv: 0706.1146 | DOI | MR | Zbl

[14] S. Capozziello, S. Nojiri, S. D. Odintsov, Phys. Lett. B, 634:2–3 (2006), 93–100, arXiv: hep-th/0512118 | DOI

[15] S. Nojiri, S. D. Odintsov, Int. J. Geom. Methods Mod. Phys., 4:1 (2007), 115–145 | DOI | MR | Zbl

[16] S. Nojiri, S. D. Odintsov, Phys. Rev. D, 74:8 (2006), 086005, 13 pp., arXiv: hep-th/0608008 | DOI

[17] G. Allemandi, A. Borowiec, M. Francaviglia, Phys. Rev. D, 70:4 (2004), 043524, 11 pp. | DOI | MR

[18] G. Allemandi, M. Capone, S. Capozziello, M. Francaviglia, Gen. Relativity Gravitation, 38:1 (2006), 33–60, arXiv: hep-th/0409198 | DOI | MR | Zbl

[19] G. Allemandi, A. Borowiec, M. Francaviglia, S. D. Odintsov, Phys. Rev. D, 72:6 (2005), 063505, 10 pp., arXiv: gr-qc/0504057 | DOI

[20] S. Capozziello, F. Darabi, D. Vernieri, Mod. Phys. Lett. A, 25:39 (2010), 3279–3289, arXiv: 1009.2580 | DOI | MR | Zbl

[21] H. Fukutaka, K. Ghoroku, K. Tanaka, Phys. Lett. B, 222:2 (1989), 191–194 | DOI

[22] F. S. Accetta, A. Chodos, B. Shao, Nucl. Phys. B, 333:1 (1990), 221–252 | DOI | MR

[23] P. F. González-Diaz, Phys. Lett. B, 233:1–2 (1989), 85–88 | DOI

[24] P. F. González-Diaz, Phys. Lett. B, 247:2–3 (1990), 251–256 | DOI

[25] O. Bertolami, Phys. Lett. B, 234:3 (1990), 258–264 | DOI | MR

[26] D. H. Coule, K. Maeda, Class. Quant. Grav., 7:6 (1990), 955–963 | DOI | MR | Zbl

[27] H. A. Buchdahl, Mon. Not. Roy. Astron. Soc., 150 (1970), 1 | DOI

[28] T. P. Sotiriou, Class. Quant. Grav., 23:17 (2006), 5117–5128, arXiv: gr-qc/0604028 | DOI | MR | Zbl

[29] M. Roshan, F. Shojai, Phys. Lett. B, 668:3 (2008), 238–240 | DOI | MR

[30] S. Capoziello, R. de Ritis, A. A. Marino, Class. Quant. Grav., 14:12 (1997), 3243–3258 | DOI | MR

[31] S. Capoziello, R. de Ritis, A. A. Marino, Class. Quant. Grav., 14:12 (1998), 3259–3268 | DOI | MR

[32] S. Capozziello, F. Darabi, D. Vernieri, Modern Phys. Lett. A, 26:1 (2011), 65–72, arXiv: 1006.0454 | DOI | MR | Zbl

[33] J. O'Hanlon, Phys. Rev. Lett., 29:2 (1972), 137–138 | DOI

[34] J. J. Halliwell, R. Laflamme, Class. Quant. Grav., 6:12 (1989), 1839–1846 | DOI | MR | Zbl

[35] Y. Verbin, A. Davidson, Nucl. Phys. B, 339:2 (1990), 545–559 | DOI

[36] D. N. Page, J. Math. Phys., 32:12 (1991), 3427–3438 | DOI | MR

[37] H. Fukutaka, K. Ghoroku, K. Tanaka, Phys. Lett. B, 222:2 (1989), 191–194 | DOI

[38] S. Capozziello, M. De Laurentis, Phys. Rep., 509:4–5 (2011), 167–321, arXiv: 1108.6266 | DOI | MR