Asymptotic behavior of small deviations for Bogoliubov's Gaussian measure in the~$L^p$ norm, $2\le p\le\infty$
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 453-467

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove several results on exact asymptotic formulas for small deviations in the $L^p$-norm with $2\le p\le\infty$ for Bogoliubov's stationary Gaussian process $\xi(t)$. We prove the property of mutual absolute continuity for the conditional Bogoliubov measure and the conditional Wiener measure and calculate the Radon–Nikodym derivative.
Keywords: small deviation, Bogoliubov measure, conditional Wiener measure.
@article{TMF_2012_173_3_a6,
     author = {V. R. Fatalov},
     title = {Asymptotic behavior of small deviations for {Bogoliubov's} {Gaussian} measure in the~$L^p$ norm, $2\le p\le\infty$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {453--467},
     publisher = {mathdoc},
     volume = {173},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a6/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Asymptotic behavior of small deviations for Bogoliubov's Gaussian measure in the~$L^p$ norm, $2\le p\le\infty$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 453
EP  - 467
VL  - 173
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a6/
LA  - ru
ID  - TMF_2012_173_3_a6
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Asymptotic behavior of small deviations for Bogoliubov's Gaussian measure in the~$L^p$ norm, $2\le p\le\infty$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 453-467
%V 173
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a6/
%G ru
%F TMF_2012_173_3_a6
V. R. Fatalov. Asymptotic behavior of small deviations for Bogoliubov's Gaussian measure in the~$L^p$ norm, $2\le p\le\infty$. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 453-467. http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a6/