Mots-clés : Kähler supermanifold, hyper-Kähler supermanifold.
@article{TMF_2012_173_3_a4,
author = {S. Bouarroudj and P. Ya. Grozman and D. A. Leites and I. M. Shchepochkina},
title = {Minkowski superspaces and superstrings as almost real{\textendash}complex supermanifolds},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {416--440},
year = {2012},
volume = {173},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a4/}
}
TY - JOUR AU - S. Bouarroudj AU - P. Ya. Grozman AU - D. A. Leites AU - I. M. Shchepochkina TI - Minkowski superspaces and superstrings as almost real–complex supermanifolds JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 416 EP - 440 VL - 173 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a4/ LA - ru ID - TMF_2012_173_3_a4 ER -
%0 Journal Article %A S. Bouarroudj %A P. Ya. Grozman %A D. A. Leites %A I. M. Shchepochkina %T Minkowski superspaces and superstrings as almost real–complex supermanifolds %J Teoretičeskaâ i matematičeskaâ fizika %D 2012 %P 416-440 %V 173 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a4/ %G ru %F TMF_2012_173_3_a4
S. Bouarroudj; P. Ya. Grozman; D. A. Leites; I. M. Shchepochkina. Minkowski superspaces and superstrings as almost real–complex supermanifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 416-440. http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a4/
[1] D. A. Leites, UMN, 29:3 (177) (1974), 209–210 | MR | Zbl
[2] D. A. Leites, UMN, 35:1(211) (1980), 3–57 | DOI | MR | Zbl
[3] A. Yu. Vaintrob, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 32 (1988), 125–211 | DOI | MR | Zbl
[4] Concise Encyclopedia of Supersymmetry and Noncommutative Structures in Mathematics and Physics, eds. S. Duplij, W. Siegel, J. Bagger, Kluwer, Dordrecht, 2004 | MR | Zbl
[5] I. N. Bernshtein, D. A. Leites, V. Molotkov, V. Shander, Seminar po supersimmetriyam, v. 1, Algebra i analiz: osnovnye fakty, eds. D. A. Leites, MTsNMO, M., 2011
[6] Quantum Fields and Strings: a Course for Mathematicians, Material from the Special Year on Quantum Field Theory (Princeton, NJ, 1996–1997), v. 1, eds. P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D. Morrison, E. Witten, AMS, Providence, RI; IAS, Princeton, NJ, 1999 | MR | Zbl
[7] Yu. I. Manin, Kalibrovochnye polya i kompleksnaya geometriya, Nauka, M., 1984 | MR | Zbl
[8] F. A. Berezin, Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR | Zbl
[9] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | MR | Zbl | Zbl
[10] V. M. Sergeev, Predely ratsionalnosti, Fazis, M., 1999; English transl.: The thermodynamic approach market, arXiv: 0803.3432
[11] P. Grozman, D. Leites, “From supergravity to ballbearings”, Supersymmetries and Quantum Symmetries, Procedings of the Internatnl seminar in the memory of V. Ogievetsky (Dubna, July 22–26, 1997), v. 524, Lecture Notes in Physics, eds. J. Wess, E. A. Ivanov, Springer, Berlin, 1999, 58–67 | DOI | MR | Zbl
[12] P. Ya. Grozman, D. A. Leites, TMF, 153:2 (2007), 186–219, arXiv: math.DG/0509399 | DOI | MR | Zbl
[13] D. Leites (ed.), J. Jost–D. Leites Seminar on Super Riemann Surfaces, in preparation; available in preliminary form
[14] A. Newlander, L. Nirenberg, Ann. Math., 65 (1957), 391–404 | DOI | MR | Zbl
[15] P. Grozman, Invariant bilinear differential operators, arXiv: math/0509562
[16] B. Kruglikov, 2004\par http://www.math.uit.no/ansatte/boris/Images/1/12DEF-NJ.pdf
[17] A. Yu. Vaintrob, “Pochti kompleksnye struktury na supermnogoobraziyakh”, Voprosy teorii grupp i gomologicheskoi algebry, ed. A. Onischik, YarGU, Yaroslavl, 1985, 139–142 | MR | Zbl
[18] A. McHugh, J. Math. Phys., 30:5 (1989), 1039–1042 | DOI | MR | Zbl
[19] E. Poletaeva, The analogs of Riemann and Penrose tensors on supermanifolds, arXiv: math.RT/0510165
[20] P. Grozman, D. Leites, I. Shchepochkina, Acta Math. Vietnam., 26:1 (2001), 27–63, arXiv: hep-th/9702120 | MR | Zbl
[21] M. L. Kontsevich, Funkts. analiz i ego pril., 21:2 (1987), 78–79 | DOI | MR | Zbl
[22] A. A. Beilinson, V. V. Shekhtman, Commun. Math. Phys., 118:4 (1988), 651–701 | DOI | MR | Zbl
[23] Yu. I. Manin, Topics in Noncommutative Geometry, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 1991 | MR | Zbl
[24] P. Grozman, SuperLie. A Mathematica package for calculations in Lie algebras and superalgebras, 2009 http://www.equaonline.com/math/SuperLie
[25] P. Grozman, D. Leites, “An unconventional supergravity”, Noncommutative Structures in Mathematics and Physics (Kiev, September 24–28, 2000), NATO Science Series II: Mathematics, Physics and Chemistry, 22, eds. S. Duplij, J. Wess, Kluwer, Dordrecht, 2001, 41–47, arXiv: hep-th/0202115 | MR | Zbl
[26] O. I. Bogoyavlenskii, Izv. RAN. Ser. matem., 68:6 (2004), 71–84 | DOI | MR | Zbl
[27] A. Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic Superspace, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[28] D. A. Leites, Dokl. AN SSSR, 236:4 (1977), 804–807 | MR | Zbl
[29] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B, 102:1 (1981), 27–31 ; Phys. Rev. D, 28:10 (1983), 2567–2582 ; Erratum, 30:2 (1984), 508 | DOI | MR | DOI | MR | MR
[30] J. Gomis, J. Paris, S. Samuel, Phys. Rep., 259:1-2 (1995), 1–145, arXiv: hep-th/9412228 | DOI | MR
[31] S. Kuzenko, J. Phys. A, 43:44 (2010), 443001, 46 pp., arXiv: 1004.0880 | DOI | MR | Zbl
[32] I. M. Schepochkina, TMF, 147:3 (2006), 450–469, arXiv: math.RT/0509472 | DOI | DOI | MR | Zbl