Integrating Klein--Gordon--Fock equations in an~external electromagnetic field on Lie groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 375-391
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the structure of the Klein–Gordon–Fock equation symmetry algebra on pseudo-Riemannian manifolds with motions in the presence of an external electromagnetic field. We show that in the case of an invariant electromagnetic field tensor, this algebra is a one-dimensional central extension of the Lie algebra of the group of motions. Based on the coadjoint orbit method and harmonic analysis on Lie groups, we propose a method for integrating the Klein–Gordon–Fock equation in an external field on manifolds with simply transitive group actions. We consider a nontrivial example on the four-dimensional group $E(2)\times\mathbb{R}$ in detail.
Keywords:
Klein–Gordon–Fock equation, symmetry operator, Lie algebra, $\lambda $-representation.
Mots-clés : Lie group
Mots-clés : Lie group
@article{TMF_2012_173_3_a2,
author = {A. A. Magazev},
title = {Integrating {Klein--Gordon--Fock} equations in an~external electromagnetic field on {Lie} groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {375--391},
publisher = {mathdoc},
volume = {173},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a2/}
}
TY - JOUR AU - A. A. Magazev TI - Integrating Klein--Gordon--Fock equations in an~external electromagnetic field on Lie groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 375 EP - 391 VL - 173 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a2/ LA - ru ID - TMF_2012_173_3_a2 ER -
A. A. Magazev. Integrating Klein--Gordon--Fock equations in an~external electromagnetic field on Lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 375-391. http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a2/