An integrable multicomponent quad-equation and its Lagrangian formulation
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 363-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a hierarchy of discrete systems whose first members are the lattice modified Korteweg–de Vries equation and the lattice modified Boussinesq equation. The $N$th member in the hierarchy is an $N$-component system defined on an elementary plaquette in the two-dimensional lattice. The system is multidimensionally consistent, and we obtain a Lagrangian that respects this feature, i.e., has the desirable closure property.
Keywords: integrable system, discrete equation, reduction, variational principle.
Mots-clés : Lagrange formulation
@article{TMF_2012_173_3_a1,
     author = {J. Atkinson and S. B. Lobb and F. W. Nijhoff},
     title = {An integrable multicomponent quad-equation and its {Lagrangian} formulation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {363--374},
     year = {2012},
     volume = {173},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a1/}
}
TY  - JOUR
AU  - J. Atkinson
AU  - S. B. Lobb
AU  - F. W. Nijhoff
TI  - An integrable multicomponent quad-equation and its Lagrangian formulation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 363
EP  - 374
VL  - 173
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a1/
LA  - ru
ID  - TMF_2012_173_3_a1
ER  - 
%0 Journal Article
%A J. Atkinson
%A S. B. Lobb
%A F. W. Nijhoff
%T An integrable multicomponent quad-equation and its Lagrangian formulation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 363-374
%V 173
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a1/
%G ru
%F TMF_2012_173_3_a1
J. Atkinson; S. B. Lobb; F. W. Nijhoff. An integrable multicomponent quad-equation and its Lagrangian formulation. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 3, pp. 363-374. http://geodesic.mathdoc.fr/item/TMF_2012_173_3_a1/

[1] L. Bianchi, Lezioni di geometrica differenziale, Enrico Spoerri, Pisa, 1894

[2] R. Hirota, J. Phys. Soc. Japan, 43:6 (1977), 2079–2086 | DOI | MR | Zbl

[3] F. W. Nijhoff, G. R. W. Quispel, H. W. Capel, Phys. Lett. A, 97:4 (1983), 125–128 | DOI | MR

[4] F. W. Nijhoff, V. G. Papageorgiou, H. W. Capel, G. R. W. Quispel, Inverse Problems, 8:4 (1992), 597–621 | DOI | MR | Zbl

[5] G. R. W. Quispel, F. W. Nijhoff, H. W. Capel, Phys. Lett. A, 91:4 (1982), 143–145 | DOI | MR

[6] F. W. Nijhoff, “Discrete Painlevé equations and symmetry reduction on the lattice”, Discrete Integrable Geometry and Physics, Oxford Lecture Series in Mathematics and its Applications, 16, eds. A. I. Bobenko, R. Seiler, Oxford Univ. Press, New York, 1999, 209–234 | MR | Zbl

[7] P. Xenitidis, F. W. Nijhoff, Phys. Lett. A, 376:35 (2012), 2394–2401, arXiv: 1201.0028 | DOI | MR | Zbl

[8] I. M. Gelfand, L. A. Dikii, Funkts. analiz i ego pril., 10:4 (1976), 13–29 | DOI | MR | Zbl

[9] Yu. I. Manin, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 11 (1978), 5–152 | DOI | MR | Zbl

[10] R. Hirota, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR

[11] S. B. Lobb, F. W. Nijhoff, J. Phys. A, 42:45 (2009), 454013, 18 pp., arXiv: 0903.4086 | DOI | MR | Zbl

[12] S. B. Lobb, F. W. Nijhoff, J. Phys. A, 43:7 (2010), 072003, 11 pp., arXiv: 0911.1234 | DOI | MR | Zbl

[13] S. B. Lobb, F. W. Nijhoff, G. R. W. Quispel, J. Phys. A, 42:47 (2009), 472002, 11 pp. | DOI | MR | Zbl

[14] J. Atkinson, Integrable lattice equations: Connection to the Möbius group, Bäcklund transformations and solutions, Ph.D. Thesis, University of Leeds, Leeds, 2008 | MR

[15] P. J. McCarthy, Lett. Math. Phys., 2:6 (1978), 493–498 | DOI | MR | Zbl

[16] A. I. Bobenko, Yu. B. Suris, Internat. Math. Res. Not., 11 (2002), 573–611 | DOI | MR | Zbl

[17] J. Atkinson, J. Phys. A, 42:45 (2009), 454005, 7 pp., arXiv: 0903.4428 | DOI | MR | Zbl

[18] V. E. Adler, A. I. Bobenko, Yu. B. Suris, Funkts. analiz i ego pril., 43:1 (2009), 3–21 | DOI | MR | Zbl

[19] A. N. Kirillov, Progr. Theoret. Phys. (Suppl.), 118 (1995), 61–142, arXiv: hep-th/9408113 | DOI | MR | Zbl

[20] S. Yoo-Kong, S. B. Lobb, F. W. Nijhoff, J. Phys. A, 44:36 (2011), 365203, 39 pp. | DOI | MR | Zbl

[21] S. Yoo-Kong, F. W. Nijhoff, Discrete-time Ruijsenaars–Schneider system and Lagrangian 1-form structure, arXiv: 1112.4576

[22] P. Xenitidis, F. W. Nijhoff, S. B. Lobb, Proc. Royal Soc. A, 467:2135 (2011), 3295–3317, arXiv: 1008.1952 | DOI | MR | Zbl

[23] L. Lewin, Polylogarithms and Associated Functions, North-Holland, New York, 1981 | MR | Zbl

[24] J. Hietarinta, J. Phys. A, 44:16 (2011), 165204, 22 pp., arXiv: 1011.1978 | DOI | MR | Zbl

[25] Da-J. Zhang, So-L. Zhao, F. W. Nijhoff, Stud. Appl. Math., 129:2 (2012), 220–248, arXiv: 1112.0525 | DOI | MR

[26] F. W. Nijhoff, A. Ramani, B. Grammaticos, Y. Ohta, Stud. Appl. Math., 106:3 (2001), 261–314 | DOI | MR | Zbl