Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 314-332 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on a self-similar spatial–temporal structure of the relaxation process, we construct a microscopic model for a non-Debye (nonexponential) dielectric relaxation in complex systems. In this model, we derive the Cole–Cole expression for the complex dielectric permittivity and show that the exponent $\alpha$ involved in that expression is equal to the fractal dimension of the spatial–temporal self-similar ensemble characterizing the structure of the medium and the relaxation process occurring in it. We find a relation between the macroscopic relaxation time and the micro- and mesoparameters of the system. We obtain a generalized Cole–Cole expression for the complex dielectric permittivity involving log-periodic corrections that occur because of a discrete scaling invariance of the fractal structure generating the relaxation process on the mesoscopic scale. The found expression for the dielectric permittivity can be used to interpret dielectric spectra in disordered dielectrics.
Keywords: dielectric relaxation, complex dielectric permittivity, non-Debye dielectric spectrum, discrete scaling invariance, log-periodic oscillation.
Mots-clés : fractal
@article{TMF_2012_173_2_a7,
     author = {A. A. Khamzin and R. R. Nigmatullin and I. I. Popov},
     title = {Microscopic model of {a~non-Debye} dielectric relaxation: {The~Cole{\textendash}Cole} law and its generalization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {314--332},
     year = {2012},
     volume = {173},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a7/}
}
TY  - JOUR
AU  - A. A. Khamzin
AU  - R. R. Nigmatullin
AU  - I. I. Popov
TI  - Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 314
EP  - 332
VL  - 173
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a7/
LA  - ru
ID  - TMF_2012_173_2_a7
ER  - 
%0 Journal Article
%A A. A. Khamzin
%A R. R. Nigmatullin
%A I. I. Popov
%T Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 314-332
%V 173
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a7/
%G ru
%F TMF_2012_173_2_a7
A. A. Khamzin; R. R. Nigmatullin; I. I. Popov. Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 314-332. http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a7/

[1] Y. Feldman, A. Puzenko, Ya. Ryabov, “Dielectric relaxation phenomena in complex materials”, Advances in Chemical Physics, 133, eds. Y. P. Kalmykov, W. T. Coffey, S. A. Rice, Wiley, New York, 2006, 1–125

[2] M. F. Shlesinger, G. M. Zaslavsky, J. Klafter, Nature, 363:6424 (1993), 31–37 | DOI

[3] A. Schönhals, F. Kremer, A. Hofmann, E. W. Fischer, E. Schlosser, Phys. Rev. Lett., 70:22 (1993), 3459–3462 | DOI

[4] P. Lunkenheimer, A. Pimenov, M. Dressel, Yu. G. Goncharov, R. Bohmer, A. Loidl, Phys. Rev. Lett., 77:2 (1996), 318–321 | DOI

[5] U. Scheider, P. Lunkenheimer, R. Brand, A. Loidl, J. Non-Cryst. Solids, 235–237 (1998), 173–179 | DOI

[6] G. Frelikh, Teoriya dielektrikov. Dielektricheskaya pronitsaemost i dielektricheskie poteri, IL, M., 1960

[7] C. J. F. Böttcher, P. Bordewijk, Theory of Electric Polarization, v. 2, Dielectrics in Time-Dependent Fields, Elsevier, Amsterdam, 1992

[8] K. S. Cole, R. H. Cole, J. Chem. Phys., 9:4 (1941), 341–351 | DOI

[9] G. Williams, Chem. Rev., 72:1 (1972), 55–69 | DOI

[10] R. H. Cole, “Dielectric polarization and relaxation”, Molecular Liquids: Dynamics and Interactions, NATO ASI Series C, 135, eds. A. J. Barnes, W. J. Orville-Thomas, J. Yarwood, Reidel, Dordrecht, 1984, 59–110

[11] R. Kohlrausch, Ann. Phys. (Leipzig), 12 (1847), 393

[12] G. Williams, D. C. Watts, Trans. Faraday Soc., 66 (1970), 80–85 | DOI

[13] A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectric Press, London, 1983

[14] A. K. Jonscher, Universal Relaxation Law, Chelsea Dielectric Press, London, 1996

[15] R. W. Zwanzig, “Statistical mechanics of irreversibility”, Lectures in Theoretical Physics, 3, eds. W. E. Brittin, B. W. Downs, J. Downs, Interscience, New York, 1961, 106–141 | MR

[16] H. Mori, Prog. Theor. Phys., 34:3 (1965), 399–416 | DOI | MR

[17] J. P. Boon, S. Yip, Molecular Hydrodynamics, McGraw-Hill, New York, 1980 | MR

[18] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[19] R. R. Nigmatullin, TMF, 90:3 (1992), 354–368 | DOI | MR | Zbl

[20] R. R. Nigmatullin, A. Le Mehaute, J. Non-Cryst. Solids, 351:33–36 (2005), 2888–2899 | DOI

[21] E. Feder, Fraktaly, Mir, M., 1991 | MR | Zbl

[22] V. V. Novikov, V. P. Privalko, Phys. Rev. E, 64:3 (2001), 031504, 11 pp. | DOI

[23] R. R. Nigmatullin, Physica A, 363:2 (2006), 282–298 | DOI

[24] G. P. Johari, M. Goldstein, J. Chem. Phys., 53:6 (1970), 2372–2388 | DOI

[25] G. P. Johari, Ann. NY Acad. Sci., 279 (1976), 117–140 | DOI

[26] R. R. Nigmatullin, Physica B, 358:1–4 (2005), 201–205 | DOI

[27] R. R. Nigmatullin, A. A. Arbuzov, F. Salehli, A. Giz, I. Bayrak, H. Catalgil-Giz, Physica B, 388:1–2 (2007), 418–434 | DOI