Schrödinger and Dirac particles in quasi-one-dimensional systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 293-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider specific features and principal distinctions in the behavior of the energy spectra of Schrödinger and Dirac particles in the regularized “Coulomb”; potential $V_\delta(z)=-q/(|z|+\delta)$ as functions of the cutoff parameter $\delta$ in $1{+}1$ dimensions. We show that the discrete spectrum becomes a quasiperiodic function of $\delta$ for $\delta\ll1$ in such a one-dimensional “hydrogen atom” in the relativistic case. This effect is nonanalytically dependent on the coupling constant and has no nonrelativistic analogue in this case. This property of the Dirac spectral problem explicitly demonstrates the presence of a physically informative energy spectrum for an arbitrarily small $\delta>0$, but also the absence of a regular limit transition $\delta\to0$ for all nonzero $q$. We also show that the three-dimensional Coulomb problem has a similar property of quasiperiodicity with respect to the cutoff parameter for $q=Z\alpha>1$, i.e., in the case where the domain of the Dirac Hamiltonian with the nonregularized potential must be especially refined by specifying boundary conditions as $r\to0$ or by using other methods.
Keywords: relativistic effect, regularized Coulomb potential, one-dimensional hydrogen atom.
Mots-clés : Dirac equation
@article{TMF_2012_173_2_a6,
     author = {K. A. Sveshnikov and D. I. Khomovskii},
     title = {Schr\"odinger and {Dirac} particles in quasi-one-dimensional systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {293--313},
     year = {2012},
     volume = {173},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a6/}
}
TY  - JOUR
AU  - K. A. Sveshnikov
AU  - D. I. Khomovskii
TI  - Schrödinger and Dirac particles in quasi-one-dimensional systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 293
EP  - 313
VL  - 173
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a6/
LA  - ru
ID  - TMF_2012_173_2_a6
ER  - 
%0 Journal Article
%A K. A. Sveshnikov
%A D. I. Khomovskii
%T Schrödinger and Dirac particles in quasi-one-dimensional systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 293-313
%V 173
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a6/
%G ru
%F TMF_2012_173_2_a6
K. A. Sveshnikov; D. I. Khomovskii. Schrödinger and Dirac particles in quasi-one-dimensional systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 293-313. http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a6/

[1] R. J. Elliott, R. Loudon, J. Phys. Chem. Solids, 15:3–4 (1960), 196–207 | DOI | MR | Zbl

[2] M. W. Cole, M. H. Cohen, Phys. Rev. Lett., 23:21 (1969), 1238–1241 | DOI

[3] M. I. Dykman, P. M. Platzman, P. Seddighrad, Phys. Rev. B, 67:15 (2003), 155402, 15 pp., arXiv: cond-mat/0209511 | DOI

[4] T. D. Imbo, U. P. Sukhatme, Phys. Rev. Lett., 54:20 (1985), 2184–2187 | DOI

[5] M. Ghalim, S. Barmaki, F. Mastour, “Large multiphoton ionization of hydrogen atom in an intense femto-second laser: A classical, one-dimensional computer model”, Modeling Complex Systems: Sixth Granada Lectures on Computational Physics, AIP Conference Proceedings, 574, eds. P. L. Garrido, J. Marro, AIP, Melville, NY, 2001, 280–280 | DOI | MR

[6] C. M. Wong, J. D. McNeill, K. J. Gaffney, N.-H. Ge, A. D. Miller, S. H. Liu, C. B. Harris, J. Phys. Chem. B, 103:2 (1999), 282–292 | DOI

[7] H. D. Cornean, P. Duclos, T. G. Pedersen, Few-Body Syst., 34:1–3 (2004), 155–161 | DOI

[8] A. Jorio, G. Dresselhaus, M. S. Dresselhaus, Carbon Nanotubes. Advanced Topics in the Synthesis, Structure, Properties and Applications, Topics in Applies Physics, 111, Springer, Berlin, 2008 | DOI | MR

[9] C. M. Care, J. Phys. C, 5:14 (1972), 1799–1805 | DOI

[10] M. W. Cole, Phys. Rev. B, 2:10 (1970), 4239–4252 | DOI

[11] M. M. Nieto, Phys. Rev. A, 61:3 (2000), 034901, 4 pp., arXiv: quant-ph/9908059 | DOI

[12] N. B. Delone, V. P. Krainov, D. L. Shepelyanskii, UFN, 140:3 (1983), 355–392 | DOI

[13] R. V. Jensen, S. M. Susskind, M. M. Sanders, Phys. Rep., 201:1 (1991), 1–56 | DOI

[14] Ue-Li Pen, T. F. Jiang, Phys. Rev. A, 46:7 (1992), 4297–4305 | DOI

[15] A. Lopez-Castillo, C. R. de Oliveira, Chaos, Solitons and Fractals, 15:5 (2003), 859–869 | DOI | Zbl

[16] W. Rösner, G. Wunner, H. Herold, H. Ruder, J. Phys. B, 17:1 (1984), 29–52 | DOI | MR

[17] M. A. Liberman, B. Iokhansson, UFN, 165:2 (1995), 121–142 | DOI

[18] X. Guan, B. Li, K. T. Taylor, J. Phys. B, 36:17 (2003), 3569–3590 | DOI

[19] R. Loudon, Am. J. Phys., 27:9 (1959), 649–655 | DOI

[20] W. Fisher, H. Leschke, P. Müller, J. Math. Phys., 36:5 (1995), 2313–2323, arXiv: cond-mat/9501081 | DOI | MR

[21] C. R. de Oliveira, A. A. Verri, Ann. Phys., 324:2 (2009), 251–266, arXiv: 0806.2764 | DOI | MR | Zbl

[22] M. Andrews, Am. J. Phys., 34:12 (1966), 1194–1195 | DOI

[23] P. Kurasov, J. Phys. A, 29:8 (1996), 1767–1771 | DOI | MR | Zbl

[24] M. Moshinsky, J. Phys. A, 26:10 (1993), 2445–2350 | DOI | MR | Zbl

[25] R. G. Newton, J. Phys. A, 27:13 (1984), 4717–4718 | DOI | MR

[26] S. Nouri, Phys. Rev. A, 65:6 (2002), 062108, 5 pp. | DOI

[27] I. Tsuitsui, R. Fülöp, T. Cheon, J. Phys. A, 36:1 (2003), 275–287, arXiv: quant-ph/0209110 | DOI | MR

[28] B. Jaramillo, R. P. Martinez-y-Romero, H. N. Núñez-Yépez, A. L. Salas-Brito, Phys. Lett. A, 374:2 (2009), 150–153 | DOI | MR | Zbl

[29] M. K. Kostov, M. W. Cole, G. D. Mahan, Phys. Rev. B, 66:7 (2002), 075407, 5 pp., arXiv: cond-mat/0204094 | DOI

[30] F. Gesztesy, J. Phys. A, 13:3 (1980), 867–875 | DOI | MR | Zbl

[31] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 1, Mir, M., 1974 | MR

[32] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR | Zbl

[33] C. R. de Oliveira, Phys. Lett. A, 374:28 (2010), 2805–2808 | DOI | MR | Zbl

[34] R. E. Moss, Am. J. Phys., 55:5 (1987), 397–401 | DOI

[35] B. L. Voronov, D. T. Gitman, I. V. Tyutin, TMF, 150:1 (2007), 41–84 | DOI | MR | Zbl

[36] V. P. Krainov, ZhETF, 64:3 (1973), 800–803

[37] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002 | MR | Zbl

[38] G. Barton, J. Phys. A, 40:5 (2007), 1011–1031 | DOI | MR | Zbl

[39] R. L. Hall, Phys. Lett. A, 372:1 (2007), 12–15, arXiv: 0707.1018 | DOI | MR | Zbl

[40] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, V. F. Weisskopf, Phys. Rev. D, 9:12 (1974), 3471–3495 | DOI | MR

[41] J. von Neumann, Mat. Ann., 102 (1929), 49–131 | MR | Zbl

[42] M. H. Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, American Mathematical Society Colloquium Publications, 15, AMS, Providence, RI, 1932 | MR | Zbl

[43] C. R. de Oliveira, Intermediate Spectral Theory and Quantum Dynamics, Progress in Mathematical Physics, 54, Birkhauser, Basel, 2009 | MR | Zbl

[44] Ya. B. Zeldovich, V. S. Popov, UFN, 105:3 (1971), 403–440 | DOI

[45] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Vakumnye kvantovye effekty v silnykh polyakh, Energoatomizdat, M., 1988

[46] W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer, Berlin, 1985

[47] W. Greiner, J. Reinhardt, Quantum Electrodynamics, Springer, Berlin, 2003 | MR | Zbl

[48] W. Greiner, “Structure of vacuum and elementary matter: From superheavies via hypermatter to antimatter-the vacuum decay in supercritical fields”, Chapter 8, Current Trends in Atomic Physics, Advances in Quantum Chemistry, 53, eds. S. Salomonson E. Lindroth, 2008, 99–150 | DOI

[49] W. Greiner, S. Schramm, Am. J. Phys., 76:6 (2008), 509–526 | DOI

[50] R. Ruffini, G. Vereshchagin, S.-S. Xue, Phys. Rep., 487:1–4 (2010), 1–140, arXiv: 0910.0974 | DOI