Schr\"odinger and Dirac particles in quasi-one-dimensional systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 293-313
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider specific features and principal distinctions in the behavior of the energy spectra of Schrödinger and Dirac particles in the regularized “Coulomb”; potential $V_\delta(z)=-q/(|z|+\delta)$ as functions of the cutoff parameter $\delta$ in $1{+}1$ dimensions. We show that the discrete spectrum becomes a quasiperiodic function of $\delta$ for $\delta\ll1$ in such a one-dimensional “hydrogen atom” in the relativistic case. This effect is nonanalytically dependent on the coupling constant and has no nonrelativistic analogue in this case. This property of the Dirac spectral problem explicitly demonstrates the presence of a physically informative energy spectrum for an arbitrarily small $\delta>0$, but also the absence of a regular limit transition $\delta\to0$ for all nonzero $q$. We also show that the three-dimensional Coulomb problem has a similar property of quasiperiodicity with respect to the cutoff parameter for $q=Z\alpha>1$, i.e., in the case where the domain of the Dirac Hamiltonian with the nonregularized potential must be especially refined by specifying boundary conditions as $r\to0$ or by using other methods.
Keywords:
relativistic effect, regularized Coulomb potential, one-dimensional hydrogen atom.
Mots-clés : Dirac equation
Mots-clés : Dirac equation
@article{TMF_2012_173_2_a6,
author = {K. A. Sveshnikov and D. I. Khomovskii},
title = {Schr\"odinger and {Dirac} particles in quasi-one-dimensional systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {293--313},
publisher = {mathdoc},
volume = {173},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a6/}
}
TY - JOUR AU - K. A. Sveshnikov AU - D. I. Khomovskii TI - Schr\"odinger and Dirac particles in quasi-one-dimensional systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 293 EP - 313 VL - 173 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a6/ LA - ru ID - TMF_2012_173_2_a6 ER -
K. A. Sveshnikov; D. I. Khomovskii. Schr\"odinger and Dirac particles in quasi-one-dimensional systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 293-313. http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a6/