Nonlinear dynamics of a~quasi-one-dimensional helicoidal structure
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 268-292
Voir la notice de l'article provenant de la source Math-Net.Ru
We analytically describe solitons and spin waves in the helicoidal structure
of magnets without an inversion center using the “dressing” method in the framework of the sine-Gordon model. Analyzing the nonlinear dynamics of spin
waves in the helicoidal-structure background reduces to solving linear integral
equations on a Riemann surface generated by the superstructure. We obtain
spectral expansions of integrals of motion with the soliton and spin-wave
contributions separated.
Keywords:
helicoidal structure, Riemann problem, kink, breather.
Mots-clés : sine-Gordon equation
Mots-clés : sine-Gordon equation
@article{TMF_2012_173_2_a5,
author = {V. V. Kiselev and A. A. Raskovalov},
title = {Nonlinear dynamics of a~quasi-one-dimensional helicoidal structure},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {268--292},
publisher = {mathdoc},
volume = {173},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a5/}
}
TY - JOUR AU - V. V. Kiselev AU - A. A. Raskovalov TI - Nonlinear dynamics of a~quasi-one-dimensional helicoidal structure JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 268 EP - 292 VL - 173 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a5/ LA - ru ID - TMF_2012_173_2_a5 ER -
V. V. Kiselev; A. A. Raskovalov. Nonlinear dynamics of a~quasi-one-dimensional helicoidal structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 268-292. http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a5/