Solution of the equivalence problem for the Painlevé IV equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 245-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve the equivalence problem for the Painlevé IV equation, formulating the necessary and sufficient conditions in terms of the invariants of point transformations for an arbitrary second-order differential equation to be equivalent to the Painlevé IV equation. We separately consider three pairwise nonequivalent cases: both equation parameters are zero, $a=b=0$; only one parameter is zero, $b=0$; and the parameter $b\ne0$. In all cases, we give an explicit point substitution transforming an equation satisfying the described test into the Painlevé IV equation and also give expressions for the equation parameters in terms of invariants.
Mots-clés : Painlevé equation, point transformation, invariant.
Keywords: equivalence problem
@article{TMF_2012_173_2_a4,
     author = {V. V. Kartak},
     title = {Solution of the~equivalence problem for {the~Painlev\'e} {IV} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {245--267},
     year = {2012},
     volume = {173},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a4/}
}
TY  - JOUR
AU  - V. V. Kartak
TI  - Solution of the equivalence problem for the Painlevé IV equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 245
EP  - 267
VL  - 173
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a4/
LA  - ru
ID  - TMF_2012_173_2_a4
ER  - 
%0 Journal Article
%A V. V. Kartak
%T Solution of the equivalence problem for the Painlevé IV equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 245-267
%V 173
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a4/
%G ru
%F TMF_2012_173_2_a4
V. V. Kartak. Solution of the equivalence problem for the Painlevé IV equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 245-267. http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a4/

[1] V. I. Gromak, N. A. Lukashevich, Analiticheskie svoistva reshenii uravnenii Penleve, izd-vo “Universitetskoe”, Minsk, 1990 | MR | Zbl

[2] N. A. Kudryashov, Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, IKI, M., Izhevsk, 2004

[3] A. R. Its, V. Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painleve Equations, Lecture Notes in Mathematics, 1191, Springer, Berlin, 1986 | DOI | MR | Zbl

[4] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR | Zbl

[5] N. Kamran, K. G. Lamb, W. F. Shadwick, J. Differ. Geom., 22 (1985), 139–150 | DOI | MR | Zbl

[6] J. Hietarinta, V. Dryuma, J. Nonlinear Math. Phys., 9, supp. 1 (2002), 67–74 | DOI | MR

[7] M. V. Babich, L. A. Bordag, J. Differ. Equations, 157:2 (1999), 452–485 | DOI | MR | Zbl

[8] A. V. Bocharov, V. V. Sokolov, S. I. Svinolupov, On Some Equivalence Problem for Differential Equations, Preprint ESI 54, International Erwin Schrödinger Institute for Mathematical Physics, Vienna, 1993

[9] R. Dridi, J. Phys. A, 42:12 (2009), 125201, 1–9, 9 pp. | DOI | MR | Zbl

[10] V. V. Kartak, Ufimsk. matem. zhurn., 1:3 (2009), 46–56, arXiv: 0909.1987 | MR | Zbl

[11] V. V. Kartak, J. Nonlinear Math. Phys., 18:4 (2011), 613–640, arXiv: 1106.6124 | DOI | MR | Zbl

[12] A. Tresse, Acta Math., 18:1 (1894), 1–88 | DOI | MR

[13] A. Tresse, Détermination des invariants ponctuels de l'équation différentielle ordinaire de second ordre $y''=w(x,y,y')$, S. Hirzel, Leipzig, 1896 | Zbl

[14] R. Liouville, J. de L'École Polytechnique, 59 (1889), 7–76 | Zbl

[15] E. Cartan, Bull. Soc. Math. France, 52 (1924), 205–241 | DOI | MR | Zbl

[16] S. Lie, Theorie der Transformationsgruppen III, Teubner, Leipzig, 1930

[17] G. Thomsen, Abhandlungen Hamburg, 7 (1930), 301–328 | DOI | Zbl

[18] C. Grissom, G. Thompson, G. Wilkens, J. Differ. Equations, 77:1 (1989), 1–15 | DOI | MR | Zbl

[19] L. A. Bordag, V. S. Dryuma, Investigation of dynamical systems using tools of the theory of invariants and projective geometry, NTZ-Preprint 24/95, Zentrum für Höhere Studien, Univ. Leipzig, Leipzig, 1995, arXiv: solv-int/9705006 | MR

[20] V. V. Dmitrieva, R. A. Sharipov, On the point transformations for the second order differential equations I, arXiv: solv-int/9703003

[21] R. A. Sharipov, On the point transformations for the equation $y''=P+3Qy'+3R{y'}^2+S{y'}^3$, arXiv: solv-int/9706003

[22] R. A. Sharipov, Effective procedure of point classification for the equations $y''=P+3\,Q\,y'+3\,R\,{y'}^2 +S\,{y'}^3$, arXiv: math/9802027

[23] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Fizmatlit, M., 1986 | MR | Zbl

[24] C. Bandle, L. A. Bordag, Nonlinear Anal., Ser. A, 50:4 (2002), 523–540 | DOI | MR | Zbl

[25] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, New York, 1997 | MR