Keywords: equivalence problem
@article{TMF_2012_173_2_a4,
author = {V. V. Kartak},
title = {Solution of the~equivalence problem for {the~Painlev\'e} {IV} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {245--267},
year = {2012},
volume = {173},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a4/}
}
V. V. Kartak. Solution of the equivalence problem for the Painlevé IV equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 245-267. http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a4/
[1] V. I. Gromak, N. A. Lukashevich, Analiticheskie svoistva reshenii uravnenii Penleve, izd-vo “Universitetskoe”, Minsk, 1990 | MR | Zbl
[2] N. A. Kudryashov, Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, IKI, M., Izhevsk, 2004
[3] A. R. Its, V. Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painleve Equations, Lecture Notes in Mathematics, 1191, Springer, Berlin, 1986 | DOI | MR | Zbl
[4] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR | Zbl
[5] N. Kamran, K. G. Lamb, W. F. Shadwick, J. Differ. Geom., 22 (1985), 139–150 | DOI | MR | Zbl
[6] J. Hietarinta, V. Dryuma, J. Nonlinear Math. Phys., 9, supp. 1 (2002), 67–74 | DOI | MR
[7] M. V. Babich, L. A. Bordag, J. Differ. Equations, 157:2 (1999), 452–485 | DOI | MR | Zbl
[8] A. V. Bocharov, V. V. Sokolov, S. I. Svinolupov, On Some Equivalence Problem for Differential Equations, Preprint ESI 54, International Erwin Schrödinger Institute for Mathematical Physics, Vienna, 1993
[9] R. Dridi, J. Phys. A, 42:12 (2009), 125201, 1–9, 9 pp. | DOI | MR | Zbl
[10] V. V. Kartak, Ufimsk. matem. zhurn., 1:3 (2009), 46–56, arXiv: 0909.1987 | MR | Zbl
[11] V. V. Kartak, J. Nonlinear Math. Phys., 18:4 (2011), 613–640, arXiv: 1106.6124 | DOI | MR | Zbl
[12] A. Tresse, Acta Math., 18:1 (1894), 1–88 | DOI | MR
[13] A. Tresse, Détermination des invariants ponctuels de l'équation différentielle ordinaire de second ordre $y''=w(x,y,y')$, S. Hirzel, Leipzig, 1896 | Zbl
[14] R. Liouville, J. de L'École Polytechnique, 59 (1889), 7–76 | Zbl
[15] E. Cartan, Bull. Soc. Math. France, 52 (1924), 205–241 | DOI | MR | Zbl
[16] S. Lie, Theorie der Transformationsgruppen III, Teubner, Leipzig, 1930
[17] G. Thomsen, Abhandlungen Hamburg, 7 (1930), 301–328 | DOI | Zbl
[18] C. Grissom, G. Thompson, G. Wilkens, J. Differ. Equations, 77:1 (1989), 1–15 | DOI | MR | Zbl
[19] L. A. Bordag, V. S. Dryuma, Investigation of dynamical systems using tools of the theory of invariants and projective geometry, NTZ-Preprint 24/95, Zentrum für Höhere Studien, Univ. Leipzig, Leipzig, 1995, arXiv: solv-int/9705006 | MR
[20] V. V. Dmitrieva, R. A. Sharipov, On the point transformations for the second order differential equations I, arXiv: solv-int/9703003
[21] R. A. Sharipov, On the point transformations for the equation $y''=P+3Qy'+3R{y'}^2+S{y'}^3$, arXiv: solv-int/9706003
[22] R. A. Sharipov, Effective procedure of point classification for the equations $y''=P+3\,Q\,y'+3\,R\,{y'}^2 +S\,{y'}^3$, arXiv: math/9802027
[23] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Fizmatlit, M., 1986 | MR | Zbl
[24] C. Bandle, L. A. Bordag, Nonlinear Anal., Ser. A, 50:4 (2002), 523–540 | DOI | MR | Zbl
[25] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, New York, 1997 | MR