One family of conformally Hamiltonian systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 179-196

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a method for constructing conformally Hamiltonian systems of dynamical equations whose invariant measure arises from the Hamiltonian equations of motion after a change of variables including a change of time. As an example, we consider the Chaplygin problem of the rolling ball and the Veselova system on the Lie algebra $e^*(3)$ and prove their complete equivalence.
Keywords: integrable system, nonholonomic system, Chaplygin ball, Veselova system.
@article{TMF_2012_173_2_a0,
     author = {A. V. Tsiganov},
     title = {One family of conformally {Hamiltonian} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--196},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a0/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - One family of conformally Hamiltonian systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 179
EP  - 196
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a0/
LA  - ru
ID  - TMF_2012_173_2_a0
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T One family of conformally Hamiltonian systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 179-196
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a0/
%G ru
%F TMF_2012_173_2_a0
A. V. Tsiganov. One family of conformally Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 179-196. http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a0/