One family of conformally Hamiltonian systems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 179-196
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We propose a method for constructing conformally Hamiltonian systems of dynamical equations whose invariant measure arises from the Hamiltonian equations of motion after a change of variables including a change of time. As an example, we consider the Chaplygin problem of the rolling ball and the Veselova system on the Lie algebra $e^*(3)$ and prove their complete equivalence.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
integrable system, nonholonomic system, Chaplygin ball, Veselova system.
                    
                  
                
                
                @article{TMF_2012_173_2_a0,
     author = {A. V. Tsiganov},
     title = {One family of conformally {Hamiltonian} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--196},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a0/}
}
                      
                      
                    A. V. Tsiganov. One family of conformally Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 2, pp. 179-196. http://geodesic.mathdoc.fr/item/TMF_2012_173_2_a0/