Some problems of the theory of quantum statistical systems with an energy spectrum of the fractional-power type
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 135-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of the effective interaction potential in a quantum many-particle system leading to the fractional-power dispersion law. We show that passing to fractional-order derivatives is equivalent to introducing a pair interparticle potential. We consider the case of a degenerate electron gas. Using the van der Waals equation, we study the equation of state for systems with a fractional-power spectrum. We obtain a relation between the van der Waals constant and the phenomenological parameter $\alpha$, the fractional-derivative order. We obtain a relation between energy, pressure, and volume for such systems: the coefficient of the thermal energy is a simple function of $\alpha$. We consider Bose–Einstein condensation in a system with a fractional-power spectrum. The critical condensation temperature for $1<\alpha<2$ is greater in the case under consideration than in the case of an ideal system, where $\alpha=2$.
Keywords: fractional-order derivative, nonquadratic spectrum, Green's function, van der Waals equation, Bose–Einstein condensation.
@article{TMF_2012_173_1_a7,
     author = {Z. Z. Alisultanov and R. P. Meylanov},
     title = {Some problems of the~theory of quantum statistical systems with an~energy spectrum of the~fractional-power type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {135--148},
     year = {2012},
     volume = {173},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a7/}
}
TY  - JOUR
AU  - Z. Z. Alisultanov
AU  - R. P. Meylanov
TI  - Some problems of the theory of quantum statistical systems with an energy spectrum of the fractional-power type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 135
EP  - 148
VL  - 173
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a7/
LA  - ru
ID  - TMF_2012_173_1_a7
ER  - 
%0 Journal Article
%A Z. Z. Alisultanov
%A R. P. Meylanov
%T Some problems of the theory of quantum statistical systems with an energy spectrum of the fractional-power type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 135-148
%V 173
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a7/
%G ru
%F TMF_2012_173_1_a7
Z. Z. Alisultanov; R. P. Meylanov. Some problems of the theory of quantum statistical systems with an energy spectrum of the fractional-power type. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 135-148. http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a7/

[1] I. M. Lifshits, M. I. Kaganov, UFN, 69:11 (1959), 419–458 | DOI | MR

[2] F. G. Bass, E. A. Rubinshtein, FTT, 19:5 (1977), 1379–1388

[3] F. G. Bass, V. V. Konotop, A. P. Panchekha, ZhETF, 96:5 (1989), 1869–1879

[4] F. G. Bass, A. P. Panchekha, ZhETF, 99:6 (1991), 1711–1717

[5] R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl

[6] V. V. Uchaikin, Metod drobnykh proizvodnykh, izd-vo “Artishok”, Ulyanovsk, 2008

[7] V. V. Uchaikin, ZhETF, 124:4 (2003), 903–920 | DOI

[8] A. A. Stanislavskii, TMF, 138:3 (2004), 491–507 | DOI | MR | Zbl

[9] R. P. Meilanov, M. R. Shabanova, ZhTF, 81:7 (2011), 1–6 | DOI

[10] R. T. Sibatov, V. V. Uchaikin, UFN, 179:10 (2009), 1079–1104 | DOI | DOI

[11] S. Sh. Rekhviashvili, FTT, 49:4 (2007), 756–759 | DOI

[12] X.-B. Wang, J.-X. Li, Q. Jiang, Z.-H. Zhang, D.-C. Tian, Phys. Rev., 49:14 (1994), 9778–9781 | DOI | MR

[13] A. V. Milovanov, J. J. Rasmussen, Phys. Rev. B, 66:13 (2002), 134505, 11 pp., arXiv: cond-mat/0201504 | DOI

[14] F. J. Dyson, Commun. Math. Phys., 12:2 (1969), 91–107 | DOI | MR | Zbl

[15] F. J. Dyson, Commun. Math. Phys., 12:3 (1969), 212–215 | DOI | MR

[16] F. J. Dyson, Commun. Math. Phys., 21:4 (1971), 269–283 | DOI | MR

[17] N. Laskin, G. Zaslavsky, Physica A, 368:1 (2006), 38–54, arXiv: nlin/0512010 | DOI

[18] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | Zbl

[19] N. Laskin, Phys. Lett. A, 268:4–6 (2000), 298–305, arXiv: hep-ph/9910419 | DOI | MR | Zbl

[20] N. Laskin, Phys. Rev. E, 62:3 (2000), 3135–3145, arXiv: 0811.1769 | DOI | MR

[21] V. M. Eleonskii, V. G. Korolev, N. E. Kulagin, Pisma v ZhETF, 76:12 (2002), 859–862 | DOI

[22] V. E. Tarasov, Phys. Rev. E, 71:1 (2005), 011102, 12 pp., arXiv: cond-mat/0505720 | DOI | MR

[23] V. E. Tarasov, Chaos, 16:3 (2006), 033108, 7 pp., arXiv: 0710.1807 | DOI | MR | Zbl

[24] V. E. Tarasov, Modern Phys. Lett. B, 21:5 (2007), 237–248, arXiv: 0711.0859 | DOI | MR | Zbl

[25] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 306:5696 (2004), 666–669, arXiv: cond-mat/0410550 | DOI

[26] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature, 438:7065 (2005), 197–200 | DOI

[27] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Modern Phys., 81:1 (2009), 109–162, arXiv: 0709.1163 | DOI

[28] Z. Z. Alisultanov, R. P. Meilanov, TMF, 171:3 (2012), 404–416 | DOI | DOI | MR | Zbl

[29] C. G. Samko, F. F. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[30] A. B. Alkhasov, R. P. Meilanov, M. R. Shabanova, IFZh, 84:2 (2011), 309–317 | DOI

[31] L. Kadanov, G. Beim, Kvantovaya statisticheskaya mekhanika. Metody funktsii Grina v teorii ravnovesnykh i neravnovesnykh protsessov, Mir, M., 1964 | MR | Zbl

[32] R. Balesku, Statisticheskaya mekhanika zaryazhennykh chastits, Mir, M., 1967 | MR

[33] I. G. Kaplan, Vvedenie v teoriyu mezhmolekulyarnykh vzaimodeistvii, Nauka, M., 1982

[34] W. Weibull, J. Appl. Mech., 18:3 (1951), 293–297 | Zbl