Perturbation of a~periodic operator by a~narrow potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 127-134
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider perturbations of a second-order periodic operator on the line; the Schrödinger operator with a periodic potential is a specific case of such an operator. The perturbation is realized by a potential depending on two small parameters, one of which describes the length of the potential support, and the inverse value of other corresponds to the value of the potential. We obtain sufficient conditions for the perturbing potential to have eigenvalues in the gaps of the continuous spectrum. We also construct their asymptotic expansions and present sufficient conditions for the eigenvalues of the perturbing potential to be absent.
Keywords:
periodic operator, eigenvalue, asymptotic behavior.
Mots-clés : perturbation
Mots-clés : perturbation
@article{TMF_2012_173_1_a6,
author = {R. R. Gadyl'shin and I. Kh. Khusnullin},
title = {Perturbation of a~periodic operator by a~narrow potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {127--134},
publisher = {mathdoc},
volume = {173},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a6/}
}
TY - JOUR AU - R. R. Gadyl'shin AU - I. Kh. Khusnullin TI - Perturbation of a~periodic operator by a~narrow potential JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 127 EP - 134 VL - 173 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a6/ LA - ru ID - TMF_2012_173_1_a6 ER -
R. R. Gadyl'shin; I. Kh. Khusnullin. Perturbation of a~periodic operator by a~narrow potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a6/