Perturbation of a~periodic operator by a~narrow potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 127-134

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider perturbations of a second-order periodic operator on the line; the Schrödinger operator with a periodic potential is a specific case of such an operator. The perturbation is realized by a potential depending on two small parameters, one of which describes the length of the potential support, and the inverse value of other corresponds to the value of the potential. We obtain sufficient conditions for the perturbing potential to have eigenvalues in the gaps of the continuous spectrum. We also construct their asymptotic expansions and present sufficient conditions for the eigenvalues of the perturbing potential to be absent.
Keywords: periodic operator, eigenvalue, asymptotic behavior.
Mots-clés : perturbation
@article{TMF_2012_173_1_a6,
     author = {R. R. Gadyl'shin and I. Kh. Khusnullin},
     title = {Perturbation of a~periodic operator by a~narrow potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {173},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a6/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
AU  - I. Kh. Khusnullin
TI  - Perturbation of a~periodic operator by a~narrow potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 127
EP  - 134
VL  - 173
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a6/
LA  - ru
ID  - TMF_2012_173_1_a6
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%A I. Kh. Khusnullin
%T Perturbation of a~periodic operator by a~narrow potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 127-134
%V 173
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a6/
%G ru
%F TMF_2012_173_1_a6
R. R. Gadyl'shin; I. Kh. Khusnullin. Perturbation of a~periodic operator by a~narrow potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a6/