The Fibonacci fractal is a new fractal type
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 71-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a uniform method for estimating fractal characteristics of systems satisfying some type of scaling principle. This method is based on representing such systems as generating Bethe–Cayley tree graphs. These graphs appear from the formalism of the group bundle of Fibonacci–Penrose inverse semigroups. We consistently consider the standard schemes of Cantor and Koch in the new method. We prove the fractal property of the proper Fibonacci system, which has neither a negative nor a positive redundancy type. We illustrate the Fibonacci fractal by an original procedure and in the coordinate representation. The golden ratio and specific inversion property intrinsic to the Fibonacci system underlie the Fibonacci fractal. This property is reflected in the structure of the Fibonacci generator.
Mots-clés : Fibonacci fractal, Cantor fractal, Koch fractal
Keywords: generating tree graph, scaling, Koch generator, Cantor generator.
@article{TMF_2012_173_1_a3,
     author = {V. V. Yudin and E. S. Startsev},
     title = {The~Fibonacci fractal is a~new fractal type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {71--88},
     year = {2012},
     volume = {173},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a3/}
}
TY  - JOUR
AU  - V. V. Yudin
AU  - E. S. Startsev
TI  - The Fibonacci fractal is a new fractal type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 71
EP  - 88
VL  - 173
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a3/
LA  - ru
ID  - TMF_2012_173_1_a3
ER  - 
%0 Journal Article
%A V. V. Yudin
%A E. S. Startsev
%T The Fibonacci fractal is a new fractal type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 71-88
%V 173
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a3/
%G ru
%F TMF_2012_173_1_a3
V. V. Yudin; E. S. Startsev. The Fibonacci fractal is a new fractal type. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 71-88. http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a3/

[1] R. Penrouz, Novyi um korolya, Editorial URSS, M., 2003

[2] P. J. Steinhardt, Nature, 452:7183 (2008), 43–44 | DOI

[3] A. S. Keys, S. C. Glotzer, Phys. Rev. Lett., 99:23 (2007), 235503, 4 pp., arXiv: 0705.0106 | DOI

[4] E. Abe, Y. F. Yan, S. J. Pennycook, Nature Mater., 3:11 (2004), 759–767 | DOI

[5] G. Y. Onoda, P. J. Steinhardt, D. P. DiVincenzo, J. E. S. Socolar, Phys. Rev. Lett., 60:25 (1988), 2653–2656 | DOI

[6] H.-C. Jeong, Phys. Rev. Lett., 98:13 (2007), 135501, 4 pp., arXiv: 0704.0848 | DOI | MR

[7] D. Gratia, UFN, 156:10 (1988), 347–364 | DOI

[8] A. M. Bratkovskii, Yu. A. Danilov, G. I. Kuznetsov, FMM, 68:6 (1989), 1045–1095

[9] V. V. Yudin, E. S. Startsev, I. G. Permyakova, “Polugruppa Penrouza i ee fraktalnye kharakteristiki”, Materialy XI Vserossiiskogo seminara “Modelirovanie neravnovesnykh sistem – 2008” (Krasnoyarsk, Rossiya, 26–28 sentyabrya, 2008), IVM SO RAN, Krasnoyarsk, 2008, 217–219

[10] V. V. Yudin, E. S. Startsev, I. G. Permyakova, “Algebraicheskie printsipy generatsii neiroseti s kvazikristallicheskoi topologiei Fibonachchi–Penrouza”, Materialy XV Mezhdunarodnoi konferentsii po neirokibernetike (Rostov-na-Donu, Rossiya, 23–25 sentyabrya, 2009), Izd-vo YuFU, Rostov-na-Donu, 2009, 222–225

[11] V. V. Yudin, E. S. Startsev, I. G. Permyakova, TMF, 167:1 (2011), 136–160 | DOI | MR | Zbl

[12] V. V. Yudin, E. S. Startsev, I. G. Permyakova, “Fraktal Fibonachchi kak novyi tip fraktalnosti”, Materialy XII vserossiiskogo seminara “Modelirovanie neravnovesnykh sistem – 2009”, IVM SO RAN, Krasnoyarsk, 2009, 205–207

[13] A. N. Mikhalyuk, P. L. Titov, V. V. Yudin, Phys. A, 389:19 (2010), 4127–4139 | DOI

[14] V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko, E. A. Savchuk, Kristallografiya, 44:3 (1999), 413–421

[15] V. V. Yudin, T. A. Pisarenko, E. A. Lyubchenko, O. A. Chudnova, Yu. A. Karygina, Kristallografiya, 47:2 (2002), 224–231 | DOI

[16] V. V. Yudin, Yu. A. Karygina, Kristallografiya, 46:6 (2001), 1004–1008 | DOI

[17] B. Sutherland, Phys. Rev. B, 35:18 (1987), 9529–9534 | DOI | MR

[18] R. Kronover, Fraktaly i khaos v dinamicheskikh sistemakh, Postmarket, M., 2000

[19] V. V. Yudin, S. A. Schegoleva, “Amorfnye plenki, stekla, kvazikristally kak slozhnye sistemy”, Plenar. dokl. VI Mezhdistsiplinarnogo seminara “Fraktaly i prikladnaya sinergetika”, IMM RAN, M., 2005, 32

[20] Dzh. Kasti, Bolshie sistemy. Svyaznost, slozhnost, katastrofy, Mir, M., 1982 | MR

[21] V. V. Yudin, E. A. Lyubchenko, T. A. Pisarenko, Informodinamika setevykh struktur, DVGU, Vladivostok, 2003

[22] V. V. Yudin, A. D. Ershov, Izv. vuzov. Fizika, 6 (1970), 49–53 | DOI

[23] A. Klifford, G. Preston, Algebraicheskaya teoriya polugrupp, v. 2, Mir, M., 1972 | MR | Zbl

[24] V. V. Yudin, P. L. Titov, A. N. Mikhalyuk, TMF, 164:1 (2010), 88–107 | DOI | Zbl

[25] N. Martin, Dzh. Inglend, Matematicheskaya teoriya entropii, Mir, M., 1988 | MR | Zbl

[26] V. V. Yudin, P. L. Titov, A. N. Mikhalyuk, Izv. RAN. Ser. fiz., 73:9 (2009), 1340–1347 | Zbl

[27] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969 | Zbl

[28] B. B. Mandelbrot, Fraktalnaya geometriya prirody, IKI, M., 2002 | MR

[29] A. I. Olemskoi, A. Ya. Flat, UFN, 163:12 (1993), 1–50 | DOI

[30] G. Ananthakrishna, T. Balasubramanian, Bull. Mater. Sci., 10:1–2 (1988), 77–83 | DOI

[31] L. Petronero, E. Tozatti (red.), Fraktaly v fizike, Trudy VI mezhdunarodnogo simpoziuma po fraktalam v fizike (MTsTF, Triest, Italiya, 9–12 iyulya, 1985), Mir, M., 1988 | MR | Zbl