The uniqueness condition for a weakly periodic Gibbs measure for the hard-core model
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 60-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the hard-core model on the Cayley tree. We show that this model admits only periodic Gibbs measures with the period two. We find sufficient conditions for all weakly periodic Gibbs measures to be translation invariant.
Keywords: Cayley tree, hard-core model, Gibbs measure, periodic measure, weakly periodic measure.
Mots-clés : configuration
@article{TMF_2012_173_1_a2,
     author = {U. A. Rozikov and R. M. Khakimov},
     title = {The~uniqueness condition for a~weakly periodic {Gibbs} measure for the~hard-core model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {60--70},
     year = {2012},
     volume = {173},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a2/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - R. M. Khakimov
TI  - The uniqueness condition for a weakly periodic Gibbs measure for the hard-core model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 60
EP  - 70
VL  - 173
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a2/
LA  - ru
ID  - TMF_2012_173_1_a2
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A R. M. Khakimov
%T The uniqueness condition for a weakly periodic Gibbs measure for the hard-core model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 60-70
%V 173
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a2/
%G ru
%F TMF_2012_173_1_a2
U. A. Rozikov; R. M. Khakimov. The uniqueness condition for a weakly periodic Gibbs measure for the hard-core model. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 60-70. http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a2/

[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[2] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR

[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR

[4] P. M. Blekher, N. N. Ganikhodzhaev, TVP, 35:2 (1990), 220–230 | DOI | MR | Zbl

[5] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, J. Stat. Phys., 79:1–2 (1995), 473–482 | DOI | MR | Zbl

[6] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[7] U. A. Rozikov, TMF, 112:1 (1997), 170–175 | DOI | MR | Zbl

[8] U. A. Rozikov, Yu. M. Suhov, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9:3 (2006), 471–488 | DOI | MR | Zbl

[9] J. B. Martin, U. A. Rozikov, Yu. M. Suhov, J. Nonlin. Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl

[10] N. N. Ganikhodjaev, U. A. Rozikov, Math. Phys. Anal. Geom., 12:2 (2009), 141–156 | DOI | MR | Zbl

[11] F. M. Mukhamedov, U. A. Rozikov, J. Stat. Phys., 119:1–2 (2005), 427–446, arXiv: math-ph/0510020 | DOI | MR | Zbl

[12] U. A. Rozikov, Sh. A. Shoyusupov, TMF, 156:3 (2008), 412–424 | DOI | MR | Zbl

[13] Yu. M. Suhov, U. A. Rozikov, Queueing Syst., 46:1–2 (2004), 197–212 | DOI | MR | Zbl

[14] U. A. Rozikov, M. M. Rakhmatullaev, TMF, 156:2 (2008), 292–302 | DOI | MR | Zbl

[15] U. A. Rozikov, M. M. Rakhmatullaev, TMF, 160:3 (2009), 507–516 | DOI | MR | Zbl

[16] S. Zachary, Ann. Probab., 11:4 (1983), 894–903 | DOI | MR | Zbl