Generalized Weyl correspondence and Moyal multiplier algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 38-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the Weyl correspondence and the concept of a Moyal multiplier can be naturally extended to generalized function classes that are larger than the class of tempered distributions. This generalization is motivated by possible applications to noncommutative quantum field theory. We prove that under reasonable restrictions on the test function space $E\subset L^2$, any operator in $L^2$ with a domain $E$ and continuous in the topologies of $E$ and $L^2$ has a Weyl symbol, which is defined as a generalized function on the Wigner–Moyal transform of the projective tensor square of $E$. We also give an exact characterization of the Weyl transforms of the Moyal multipliers for the Gel'fand–Shilov spaces $S^\beta_\beta$.
Mots-clés : Weyl symbol, Wigner–Moyal transform
Keywords: star product, Weyl–Heisenberg group, noncommutative field theory, topological $*$-algebra, generalized function.
@article{TMF_2012_173_1_a1,
     author = {M. A. Soloviev},
     title = {Generalized {Weyl} correspondence and {Moyal} multiplier algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {38--59},
     year = {2012},
     volume = {173},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a1/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Generalized Weyl correspondence and Moyal multiplier algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 38
EP  - 59
VL  - 173
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a1/
LA  - ru
ID  - TMF_2012_173_1_a1
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Generalized Weyl correspondence and Moyal multiplier algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 38-59
%V 173
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a1/
%G ru
%F TMF_2012_173_1_a1
M. A. Soloviev. Generalized Weyl correspondence and Moyal multiplier algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 38-59. http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a1/

[1] G. Veil, Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR | Zbl

[2] J. E. Moyal, Proc. Camb. Phylos. Soc., 45:01 (1949), 99–124 | DOI | MR | Zbl

[3] C. K. Zachos, D. B. Fairlie, T. L. Curtright (eds.), Quantum Mechanics in Phase Space, World Scientific Series in 20th Century Physics, 34, World Scientific, Singapore, 2005 | DOI | MR | Zbl

[4] G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl

[5] S. Doplicher, K. Fredenhagen, J. E. Roberts, Commun. Math. Phys., 172:1 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl

[6] R. J. Szabo, Phys. Rep., 378:4 (2003), 207–299, arXiv: hep-th/0109162 | DOI | MR | Zbl

[7] L. Álvarez-Gaumé, M. A. Vázquez-Mozo, Nucl. Phys. B, 668:1–2 (2003), 293–321, arXiv: hep-th/0305093 | DOI | MR | Zbl

[8] M. A. Solovev, TMF, 121:1 (1999), 139–164 | DOI | MR | Zbl

[9] R. Striter, A. Vaitman, RST, spin i statistika i vse takoe, Nauka, M., 1966 | MR | Zbl

[10] M. A. Solovev, TMF, 153:1 (2007), 3–17 | DOI | MR | Zbl

[11] M. A. Soloviev, J. Phys. A, 40:48 (2007), 14593–14604, arXiv: 0708.1151 | DOI | MR | Zbl

[12] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, v. 2, Prostranstva osnovnykh i obobschennykh funktsii, Fizmatlit, M., 1958 | MR | Zbl

[13] M. A. Antonets, Lett. Math. Phys., 2:3 (1978), 241–245 | DOI | MR

[14] J. M. Gracia-Bondia, F. Lizzi, G. Marmo, P. Vitale, JHEP, 04 (2002), 026, 36 pp., arXiv: hep-th/0112092 | DOI

[15] V. Gayral, J. M. Gracia-Bondia, B. Iochum, T. Schücker, J. C. Várilly, Commun. Math. Phys., 246:3 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl

[16] M. A. Soloviev, J. Math. Phys., 52:6 (2011), 063502, 18 pp., arXiv: 1012.0669 | DOI | MR | Zbl

[17] M. A. Solovev, TMF, 172:1 (2012), 9–27 | DOI

[18] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl

[19] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1966 | MR

[20] J. M. Maillard, J. Geom. Phys., 3:2 (1986), 231–261 | DOI | MR | Zbl

[21] B. S. Mityagin, Trudy MMO, 9 (1960), 317–328 | MR | Zbl

[22] H. Grosse, G. Lechner, JHEP, 09 (2008), 131, 29 pp., arXiv: 0808.3459 | DOI | MR

[23] G. Lechner, Deformations of quantum field theories and integrable models, arXiv: 1104.1948 | MR

[24] M. A. Solovev, TMF, 147:2 (2006), 257–269 | DOI | MR | Zbl

[25] A. Fisher, R. J. Szabo, JHEP, 02 (2009), 031, 37 pp., arXiv: 0810.1195 | DOI

[26] J. Zahn, Ann. Henri Poincaré, 12:4 (2011), 777–804, arXiv: 1005.0541 | DOI | MR | Zbl

[27] A. Fisher, R. J. Szabo, Phys. Rev. D, 84:12 (2011), 125010, 29 pp., arXiv: 1106.6166 | DOI

[28] F. G. Scholtz, H. B. Geyer, J. Phys. A, 39:32 (2006), 10189–10205, arXiv: quant-ph/0602187 | DOI | MR | Zbl