Fusion in the~entwined category of Yetter--Drinfeld modules of a~rank-1 Nichols algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 3-37
Voir la notice de l'article provenant de la source Math-Net.Ru
In the braided context, we rederive a popular nonsemisimple fusion algebra from a Nichols algebra. Together with the decomposition that we find for the product of simple Yetter–Drinfeld modules, this strongly suggests that the relevant Nichols algebra furnishes an equivalence with the triplet $W$-algebra in the $(p,1)$ logarithmic models of conformal field theory. For this, the category of Yetter–Drinfeld modules is to be regarded as an entwined category (i.e., a category with monodromy but not with braiding).
Keywords:
logarithmic conformal field theory, Nichols algebra, Yetter–Drinfeld module.
Mots-clés : fusion
Mots-clés : fusion
@article{TMF_2012_173_1_a0,
author = {A. M. Semikhatov},
title = {Fusion in the~entwined category of {Yetter--Drinfeld} modules of a~rank-1 {Nichols} algebra},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--37},
publisher = {mathdoc},
volume = {173},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a0/}
}
TY - JOUR AU - A. M. Semikhatov TI - Fusion in the~entwined category of Yetter--Drinfeld modules of a~rank-1 Nichols algebra JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 3 EP - 37 VL - 173 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a0/ LA - ru ID - TMF_2012_173_1_a0 ER -
A. M. Semikhatov. Fusion in the~entwined category of Yetter--Drinfeld modules of a~rank-1 Nichols algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 3-37. http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a0/