Fusion in the entwined category of Yetter–Drinfeld modules of a rank-1 Nichols algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 3-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the braided context, we rederive a popular nonsemisimple fusion algebra from a Nichols algebra. Together with the decomposition that we find for the product of simple Yetter–Drinfeld modules, this strongly suggests that the relevant Nichols algebra furnishes an equivalence with the triplet $W$-algebra in the $(p,1)$ logarithmic models of conformal field theory. For this, the category of Yetter–Drinfeld modules is to be regarded as an entwined category (i.e., a category with monodromy but not with braiding).
Keywords: logarithmic conformal field theory, Nichols algebra, Yetter–Drinfeld module.
Mots-clés : fusion
@article{TMF_2012_173_1_a0,
     author = {A. M. Semikhatov},
     title = {Fusion in the~entwined category of {Yetter{\textendash}Drinfeld} modules of a~rank-1 {Nichols} algebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--37},
     year = {2012},
     volume = {173},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a0/}
}
TY  - JOUR
AU  - A. M. Semikhatov
TI  - Fusion in the entwined category of Yetter–Drinfeld modules of a rank-1 Nichols algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 3
EP  - 37
VL  - 173
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a0/
LA  - ru
ID  - TMF_2012_173_1_a0
ER  - 
%0 Journal Article
%A A. M. Semikhatov
%T Fusion in the entwined category of Yetter–Drinfeld modules of a rank-1 Nichols algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 3-37
%V 173
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a0/
%G ru
%F TMF_2012_173_1_a0
A. M. Semikhatov. Fusion in the entwined category of Yetter–Drinfeld modules of a rank-1 Nichols algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 173 (2012) no. 1, pp. 3-37. http://geodesic.mathdoc.fr/item/TMF_2012_173_1_a0/

[1] D. Kazhdan, G. Lusztig, J. Amer. Math. Soc., 6:4 (1993), 905–947 ; 949–1011 ; 7 (1994), 335–381 ; 383–453 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl

[2] M. Finkelberg, Geom. Funct. Anal., 6:2 (1996), 249–267 | DOI | MR | Zbl

[3] V. G. Turaev, Quantum Invariants of Knots and $3$-Manifolds, de Gruyter Studies in Mathematics, 18, Walter de Gruyter, Berlin, 1994 | MR | Zbl

[4] G. Moore, N. Seiberg, “Lectures on RCFT”, Physics, Geometry, and Topology, Proceedings of the Summer School in Theoretical Physics and the NATO Advanced Study Institute (Banff, Alberta, August 14–25, 1989), NATO Advanced Science Institutes Ser. B, 238, ed. H. C. Lee, Plenum, New York, 1990, 263–361 | MR

[5] J. Fuchs, I. Runkel, C. Schweigert, Nucl. Phys. B, 646:3 (2002), 353–497, arXiv: ; 678:3 (2004), 511–637, arXiv: ; 694:3 (2004), 277–353, arXiv: ; 715:3 (2005), 539–638, arXiv: hep-th/0204148hep-th/0306164hep-th/0403157hep-th/0412290 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[6] J. Fröhlich, J. Fuchs, I. Runkel, C. Schweigert, Adv. Math., 199:1 (2006), 192–329, arXiv: math.CT/0309465 | DOI | MR | Zbl

[7] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Commun. Math. Phys., 265:1 (2006), 47–93, arXiv: hep-th/0504093 | DOI | MR | Zbl

[8] A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, B. L. Feigin, TMF, 148:3 (2006), 398–427 | DOI | MR | Zbl

[9] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Nucl. Phys. B, 757:3 (2006), 303–343, arXiv: hep-th/0606196 | DOI | MR | Zbl

[10] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, J. Math. Phys., 48:3 (2007), 032303, 46 pp., arXiv: math/0606506 | DOI | MR | Zbl

[11] K. Nagatomo, A. Tsuchiya, The triplet vertex operator algebra $W(p)$ and the restricted quantum group at root of unity, arXiv: 0902.4607 | MR

[12] A. M. Gainutdinov, I. Yu. Tipunin, J. Phys. A, 42:31 (2009), 315207, 30 pp., arXiv: 0711.3430 | DOI | MR | Zbl

[13] P. V. Bushlanov, B. L. Feigin, A. M. Gainutdinov, I. Yu. Tipunin, Nucl. Phys. B, 818:3 (2009), 179–195, arXiv: 0901.1602 | DOI | MR | Zbl

[14] P. V. Bushlanov, A. M. Gainutdinov, I. Yu. Tipunin, Kazhdan–Lusztig equivalence and fusion of Kac modules in Virasoro logarithmic models, arXiv: 1102.0271 | MR

[15] T. Abe, Y. Arike, Intertwining operators and fusion rules for vertex operator algebras arising from symplectic fermions, arXiv: 1108.1823 | MR

[16] T. Creutzig, D. Ridout, Relating the archetypes of logarithmic conformal field theory, arXiv: 1107.2135 | MR

[17] Y.-Z. Huang, J. Yang, Logarithmic intertwining operators and associative algebras, arXiv: 1104.4679 | MR

[18] Y. Arike, K. Nagatomo, Some remarks on pseudo-trace functions for orbifold models associated with symplectic fermions, arXiv: 1104.0068 | MR

[19] R. Vasseur, J. L. Jacobsen, H. Saleur, Nucl. Phys. B, 851:2 (2011), 314–345, arXiv: 1103.3134 | DOI | MR | Zbl

[20] D. Adamović, A. Milas, J. Algebra, 344:1 (2011), 313–332, arXiv: 1101.0803 | DOI | MR | Zbl

[21] Y.-Z. Huang, J. Lepowsky, L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules, arXiv: 1012.4193 | MR

[22] M. R. Gaberdiel, I. Runkel, S. Wood, J. Phys. A, 44:1 (2011), 015204, 37 pp., arXiv: 1008.0082 | DOI | MR | Zbl

[23] J. Fuchs, C. Schweigert, C. Stigner, Modular invariant Frobenius algebras from ribbon Hopf algebra automorphisms, arXiv: 1106.0210 | MR

[24] J. Fuchs, C. Schweigert, C. Stigner, The Cardy–Cartan modular invariant, arXiv: 1201.4267 | MR

[25] R. Vasseur, A. M. Gainutdinov, J. L. Jacobsen, H. Saleur, The puzzle of bulk conformal field theories at central charge $c=0$, arXiv: 1110.1327

[26] A. M. Gainutdinov, R. Vasseur, Lattice fusion rules and logarithmic operator product expansions, arXiv: 1203.6289 | MR

[27] I. Runkel, M. R. Gaberdiel, S. Wood, Logarithmic bulk and boundary conformal field theory and the full centre construction, arXiv: 1201.6273 | MR

[28] A. M. Semikhatov, I. Yu. Tipunin, The Nichols algebra of screenings, arXiv: 1101.5810 | MR

[29] W. D. Nichols, Commun. Algebra, 6:5 (1978), 1521–1552 | DOI | MR | Zbl

[30] N. Andruskiewitsch, M. Graña, “Braided Hopf algebras over non abelian finite groups”, Coloquio de Álgebras de Operadores y Grupos Cuánticos [Colloquium on Operator Algebras and Quantum Groups] (Vaquerias, March 17–21, 1997), Bol. Acad. Nac. Cien. (Córdoba), 63, Academia Nacional de Ciencias, Córdoba, 1999, 45–78, arXiv: math/9802074 | MR | Zbl

[31] N. Andruskiewitsch, H.-J. Schneider, Ann. Math., 171:1 (2010), 375–417, arXiv: math/0502157 | DOI | MR | Zbl

[32] N. Andruskiewitsch, H.-J. Schneider, “Pointed Hopf algebras”, New Directions in Hopf Algebras, Mathematical Sciences Research Institute Publications, 43, eds. S. Montgomery, H.-J. Schneider, Cambridge Univ. Press, Cambridge, 2002, 1–68 | MR | Zbl

[33] N. Andruskiewitsch, “Some remarks on Nichols algebras”, Hopf Algebras, Lecture Notes in Pure and Applied Mathematics, 237, eds. J. Bergen, S. Catoiu, W. Chin, M. Dekker, New York, 2004, 35–45 | MR | Zbl

[34] I. Heckenberger, Adv. Math., 220:1 (2009), 59–124, arXiv: math/0605795 | DOI | MR | Zbl

[35] I. Heckenberger, Invent. Math., 164:1 (2006), 175–188, arXiv: math/0411477 | DOI | MR | Zbl

[36] N. Andruskiewitsch, I. Heckenberger, H.-J. Schneider, Amer. J. Math., 132:6 (2010), 1493–1547, arXiv: 0803.2430 | MR | Zbl

[37] N. Andruskiewitsch, D. Radford, H.-J. Schneider, J. Algebra, 324:11 (2010), 2932–2970, arXiv: 1001.3977 | DOI | MR | Zbl

[38] M. Graña, I. Heckenberger, L. Vendramin, Adv. Math., 227:5, 1956–1989, arXiv: 1004.3723 | DOI | MR | Zbl

[39] M. Graña, I. Heckenberger, J. Algebra, 314:1 (2007), 324–343 | DOI | MR | Zbl

[40] N. Andruskiewitsch, F. Fantino, G. A. Garcia, L. Vendramin, “On Nichols algebras associated to simple racks”, Groups, Algebras and Applications, Papers from the 18th Latin American Algebra Colloquium (São Pedro, August 3–8, 2009), Contemporary Mathematics, 537, ed. C. P. Milies, AMS, Providence, RI, 2011, 31–56, arXiv: 1006.5727 | DOI | MR | Zbl

[41] N. Andruskiewitsch, I. Angiono, H. Yamane, “On pointed Hopf superalgebras”, New Developments in Lie Theory and Its Applications, Proceedings of the 7th Workshop on Lie Theory and its Applications (Córdoba, November 27 – December 1, 2009), Contemporary Mathematics, 544, eds. C. Boyallian, E. Galina, L. Saal, AMS, Providence, RI, 2011, 123–140, arXiv: 1009.5148 | DOI | MR | Zbl

[42] I. Angiono, Algebra Number Theory, 3:1 (2009), 35–106, arXiv: 0804.0816 | DOI | MR | Zbl

[43] I. E. Angiono, A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems, arXiv: 1008.4144 | MR

[44] I. Angiono, On Nichols algebras of diagonal type, arXiv: 1104.0268 | MR

[45] J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu. Tipunin, Commun. Math. Phys., 247:3 (2004), 713–742, arXiv: hep-th/0306274 | DOI | MR | Zbl

[46] D. Adamović, A. Milas, Selecta Math. New Ser., 15:4 (2009), 535–561, arXiv: 0902.3417 | DOI | MR | Zbl

[47] H. G. Kausch, Phys. Lett. B, 259:4 (1991), 448–455 | DOI | MR

[48] M. R. Gaberdiel, H. G. Kausch, Nucl. Phys. B, 477 (1996), 293–318, arXiv: hep-th/9604026 | DOI | MR

[49] M. R. Gaberdiel, H. G. Kausch, Phys. Lett. B, 386:1–4 (1996), 131–137, arXiv: hep-th/9606050 | DOI | MR

[50] M. R. Gaberdiel, H. G. Kausch, Nucl. Phys. B, 538:3 (1999), 631–658, arXiv: hep-th/9807091 | DOI | MR | Zbl

[51] J. Murakami, K. Nagatomo, Internat. J. Math, 19:10 (2008), 1203–1213, arXiv: 0705.3702 | DOI | MR | Zbl

[52] P. Furlan, L. Hadjiivanov, I. Todorov, Lett. Math. Phys., 82:2–3 (2007), 117–151, arXiv: 0710.1063 | DOI | MR | Zbl

[53] Y. Arike, Symmetric linear functions of the restricted quantum group $\bar{U}_qsl_2(\mathbb{C})$, arXiv: 0706.1113 | MR

[54] H. Kondo, Y. Saito, J. Algebra, 330 (2011), 103–129, arXiv: 0901.4221 | DOI | MR | Zbl

[55] A. M. Semikhatov, Commun. Algebra, 39:5 (2011), 1883–1906, arXiv: 1001.0733 | DOI | MR | Zbl

[56] A. Yu. Alekseev, D. V. Gluschenkov, A. V. Lyakhovskaya, Algebra i analiz, 6:5 (1994), 88–125 | MR | Zbl

[57] R. Suter, Commun. Math. Phys., 163:2 (1994), 359–393 | DOI | MR | Zbl

[58] J. Xiao, Canad. J. Math., 49:4 (1997), 772–787 | DOI | MR | Zbl

[59] A. M. Semikhatov, TMF, 154:3 (2008), 510–535 | DOI | MR | Zbl

[60] A. Bruguières, J. Pure Appl. Algebra, 204:1 (2006), 170–194 | DOI | MR | Zbl

[61] M. Rosso, C. R. Acad. Sci. Paris, 320:2 (1995), 145–148 | MR | Zbl

[62] P. Schauenburg, Commun. Algebra, 24:9 (1996), 2811–2823 | DOI | MR | Zbl

[63] S. L. Woronowicz, Commun. Math. Phys., 122:1 (1989), 125–170 | DOI | MR | Zbl

[64] N. Andruskiewitsch, “About finite dimensional Hopf algebras”, Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, Argentina, January 10–21, 2000), Contemporary Mathematics, 294, eds. R. Coquereaux, A. Garcia, R. Trinchero, AMS, Providence, RI, 2002, 1–57 | DOI | MR | Zbl

[65] M. Graña, J. Algebra, 231:1 (2000), 235–257 | DOI | MR | Zbl

[66] M. Rosso, Invent. Math., 133:2 (1998), 399–416 | DOI | MR | Zbl

[67] Yu. N. Bespalov, TMF, 103:3 (1995), 368–387 | DOI | MR | Zbl

[68] Yu. N. Bespalov, Appl. Categ. Structures, 5:2 (1997), 155–204, arXiv: q-alg/9510013 | DOI | MR | Zbl

[69] Yu. N. Bespalov, B. Drabant, Hopf (bi-)modules and crossed modules in braided monoidal categories, J. Pure Appl. Algebra, 123, no. 1–3, 1998 | DOI | MR | Zbl

[70] S. Majid, Foundations of Quantum Group Theory, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[71] P. Schauenburg, J. Algebra, 169:3 (1994), 874–890 | DOI | MR | Zbl

[72] Yu. N. Bespalov, T. Kerler, V. Lyubashenko, V. Turaev, J. Pure Appl. Algebra, 148:2 (2000), 113–164, arXiv: q-alg/9709020 | DOI | MR | Zbl

[73] A. M. Semikhatov, Virasoro central charges for Nichols algebras, arXiv: 1109.1767 | MR