Taking parastatistical corrections to the Bose–Einstein distribution into account in the quantum and classical cases
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 468-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use number-theoretical methods to study the problem of particle Bose-condensation to zero energy. The parastatistical correction to the Bose–Einstein distribution establishes a relation between the quantum mechanical and statistical definitions of the Bose gas and permits correctly defining the condensation point as a gap in the spectrum in the one-dimensional case, proving the existence of the Bose condensate in the two-dimensional case, and treating the negative pressure in the classical theory of liquids as the pressure of nanopores (holes).
Keywords: two-dimensional Bose condensate, two-liquid Thiess–Landau model, new classical ideal gas, fractional number of degrees of freedom, negative pressure, gas mixture, Kay's rule.
Mots-clés : $\lambda$-point in Bose gas, holes in incompressible liquid
@article{TMF_2012_172_3_a9,
     author = {V. P. Maslov},
     title = {Taking parastatistical corrections to {the~Bose{\textendash}Einstein} distribution into account in the~quantum and classical cases},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {468--478},
     year = {2012},
     volume = {172},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a9/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Taking parastatistical corrections to the Bose–Einstein distribution into account in the quantum and classical cases
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 468
EP  - 478
VL  - 172
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a9/
LA  - ru
ID  - TMF_2012_172_3_a9
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Taking parastatistical corrections to the Bose–Einstein distribution into account in the quantum and classical cases
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 468-478
%V 172
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a9/
%G ru
%F TMF_2012_172_3_a9
V. P. Maslov. Taking parastatistical corrections to the Bose–Einstein distribution into account in the quantum and classical cases. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 468-478. http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a9/

[1] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1974 | MR | Zbl

[2] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 5, Statisticheskaya fizika, Nauka, M., 1976 | MR | Zbl

[3] V. P. Maslov, Funkts. analiz i ego pril., 37:2 (2003), 16–27 | DOI | MR | Zbl

[4] V. P. Maslov, Russ. J. Math. Phys., 19:2 (2012), 203–215 | DOI | MR | Zbl

[5] I. A. Molotkov, Russ. J. Math. Phys., 17:4 (2010), 476–485 | DOI | Zbl

[6] I. A. Kvasnikov, Termodinamika i statisticheskaya fizika: Teoriya ravnovesnykh sistem, v. 2, URSS, M., 2002 | MR

[7] P. Erdős, Bull. Amer. Math. Soc., 52 (1946), 185–188 | DOI | MR | Zbl

[8] P. Erdős, J. Lehner, Duke Math. J., 8:2 (1941), 335–345 | DOI | MR | Zbl

[9] V. P. Maslov, Math. Notes, 91:5–6 (2012), 697–703 | DOI | MR | Zbl

[10] V. P. Maslov, Russ. J. Math. Phys., 17:4 (2010), 454–467 | DOI | MR | Zbl

[11] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana dlya nelineinykh uravnenii, Nauka, M., 1976 | MR | Zbl

[12] N. N. Bogolyubov, “K teorii sverkhtekuchesti”, Izbrannye trudy, v. 2, Naukova Dumka, Kiev, 1970, 210–224

[13] V. P. Maslov, TMF, 143:3 (2005), 307–327 | DOI | MR | Zbl

[14] V. P. Maslov, Russ. J. Math. Phys., 12:3 (2005), 369–378 | MR | Zbl

[15] V. P. Maslov, TMF, 153:3 (2007), 388–408 | DOI | MR | Zbl

[16] V. P. Maslov, Russ. J. Math. Phys., 14:3 (2007), 304–318 | DOI | MR | Zbl

[17] V. P. Maslov, Russ. J. Math. Phys., 14:4 (2007), 453–464 | DOI | MR | Zbl

[18] V. P. Maslov, Russ. J. Math. Phys., 15:1 (2008), 98–101 | DOI | MR | Zbl

[19] V. P. Maslov, Russ. J. Math. Phys., 3:2 (1995), 271–276 | MR | Zbl

[20] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka v zadache mnogikh chastits i v kvantovoi teorii polya, Editorial URSS, M., 2000

[21] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | MR | Zbl

[22] V. P. Maslov, Matem. zametki, 55:3 (1994), 96–108 | DOI | MR | Zbl

[23] V. P. Maslov, Matem. zametki, 58:6 (1995), 933–936 | DOI | MR | Zbl

[24] V. P. Maslov, O. Yu. Shvedov, Matem. zametki, 61:5 (1997), 790–792 | DOI | MR | Zbl

[25] V. P. Maslov, Funkts. analiz i ego pril., 33:4 (1999), 50–64 | DOI | MR | Zbl

[26] V. P. Maslov, Math. Notes, 85:1 (2009), 146–150 | DOI | Zbl

[27] E. M. Apfelbaum, V. S. Vorob'ev, J. Phys. Chem. B, 113:11 (2009), 3521–3526 | DOI

[28] V. P. Maslov, Russ. J. Math. Phys., 18:4 (2011), 440–464 | DOI | MR | Zbl

[29] V. P. Maslov, TMF, 170:3 (2012), 457–467 | DOI | Zbl

[30] V. P. Maslov, Itogi nauki i tekhn. Sovr. probl. matem., 8 (1977), 199–271

[31] V. P. Maslov, P. P. Mosolov, Nonlinear wave equations perturbed by viscous terms, De Gruyter Expositions in Mathematics, 31, Walter de Gruyter, Berlin–New York, 2000 | MR

[32] V. P. Maslov, Threshold levels in economics, arXiv: 0903.4783