Stochastic dynamo in critical situations
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 415-436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the functional method of consecutive approximations, we consider the problem of magnetic field excitation (stochastic dynamo) by a random velocity field with a finite temporal correlation radius. In critical situations, in the first (diffusion) approximation, the Lyapunov characteristic parameter of the magnetic field energy vanishes. This implies the absence of structure formation (clustering) in realizations of the magnetic field in that approximation. Critical situations occur in problems of magnetic field diffusion in an equilibrium thermal and random pseudoequilibrium and acoustic (in the absence of dissipation) velocity fields. The sign of the Lyapunov characteristic parameter in the second-order approximation determines the possibility of clustering of the magnetic field energy. We show that energy clustering does not occur in a thermal velocity field. In the cases of pseudoequilibrium and acoustic velocity fields, clustering occurs with probability one, i.e., in almost every realization. We evaluate the characteristic time for clustering to be established.
Keywords: Lyapunov characteristic parameter, stochastic dynamo, clustering, critical situation.
@article{TMF_2012_172_3_a6,
     author = {V. I. Klyatskin},
     title = {Stochastic dynamo in critical situations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {415--436},
     year = {2012},
     volume = {172},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a6/}
}
TY  - JOUR
AU  - V. I. Klyatskin
TI  - Stochastic dynamo in critical situations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 415
EP  - 436
VL  - 172
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a6/
LA  - ru
ID  - TMF_2012_172_3_a6
ER  - 
%0 Journal Article
%A V. I. Klyatskin
%T Stochastic dynamo in critical situations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 415-436
%V 172
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a6/
%G ru
%F TMF_2012_172_3_a6
V. I. Klyatskin. Stochastic dynamo in critical situations. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 415-436. http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a6/

[1] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. VIII, Elektrodinamika sploshnykh sred, Nauka, M., 1992 | MR | Zbl

[2] V. I. Klyatskin, ZhETF, 136:6(12) (2009), 1032–1044 | DOI

[3] V. I. Klyatskin, UFN, 181:5 (2011), 457–482 | DOI | DOI

[4] A. P. Kazantsev, ZhETF, 53 (1967), 1806–1813

[5] S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokolov, UFN, 145:4 (1985), 593–628 | DOI

[6] Ya. B. Zeldovich, S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokolov, ZhETF, 89:6 (1985), 2061–2072; УФН, 152:5 (1987), 3–32 | DOI

[7] Ya. B. Zeldovich, A. A. Ruzmaikin, UFN, 152:6 (1987), 263–284 | DOI

[8] V. I. Klyatskin, O. G. Chkhetiani, ZhETF, 136:2(8) (2009), 400–413 | DOI

[9] V. I. Klyatskin, Stokhasticheskie uravneniya glazami fizika. Osnovnye polozheniya, tochnye rezultaty i asimptoticheskie priblizheniya,, Fizmatlit, M., 2001 ; Динамика стохастических систем, Физматлит, М., 2002 | MR | MR | Zbl | Zbl

[10] V. I. Klyatskin, Diffuziya i klasterizatsiya passivnoi primesi v sluchainykh gidrodinamicheskikh potokakh, Fizmatlit, M., 2005 ; Стохастические уравнения. Теория и ее приложения к акустике, гидродинамике и радиофизике, Физматлит, М., 2008 | MR | Zbl | Zbl

[11] V. I. Klyatskin, Dinamika stokhasticheskikh sistem, Kurs lektsii, Fizmatlit, M., 2002 | Zbl

[12] V. I. Klyatskin, Izvestiya RAN. Fiz. atm. i okeana, 44:1 (2008), 21–35 ; УФН, 178:4 (2008), 419–431 ; 178:4 (2008), 419–431 ; 179:5 (2009), 547–553 | DOI | DOI | DOI | DOI

[13] L. D. Landau, E. M. Lifshits, ZhETF, 32:2 (1957), 618–619 | Zbl

[14] E. M. Lifshits, L. P. Pitaevskii, Statisticheskaya fizika, chast 2: Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR

[15] M. L. Levin, S. M. Rytov, Teoriya ravnovesnykh teplovykh fluktuatsii v elektrodinamike, Nauka, M., 1967

[16] V. I. Klyatskin, Izvestiya AN SSSR. Fiz. atm. i okeana, 7:5 (1971), 486–495 | MR

[17] V. I. Klyatskin, Statisticheskoe opisanie dinamicheskikh sistem s fluktuiruyuschimi parametrami, Fizmatlit, M., 1975

[18] V. I. Klyatskin, V. I. Tatarskii, Izv. vuzov. Radiofizika, 14:9 (1971), 1400–1415 | DOI

[19] S. I. Vainshtein, Ya. B. Zeldovich, A. A. Ruzmaikin, Turbulentnoe dinamo v astrofizike, Nauka, M., 1980

[20] N. A. Silantev, Pisma v ZhETF, 72:1–2 (2000), 60–65 ; ЖЭТФ, 111:3 (1977), 871–881 ; 114:3 (1998), 930–945 ; 116:1 (1999), 85–104 ; 122:5 (2002), 1107–1115 ; 125:4 (2004), 831–849 | DOI | DOI | DOI | DOI | DOI | DOI

[21] S. I. Vainshtein, Dokl. AN SSSR, 195 (1970), 793–796 | Zbl

[22] S. I. Vainshtein, Ya. B. Zeldovich, UFN, 106:6 (1972), 431–457 | DOI

[23] A. P. Kazantsev, A. A. Ruzmaikin, D. D. Sokolov, ZhETF, 88:2 (1985), 487–494