Monopole solutions as three-dimensional generalizations of Kronecker
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 403-414
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the Dirac monopole on a three-dimensional torus as a solution of the Bogomolny equations with nontrivial boundary conditions. We show that a suitable analytic continuation of the obtained solution is a three-dimensional generalization of the Kronecker series, satisfies the corresponding functional equation, and is invariant under modular transformations.
Mots-clés :
Bogomolny equation, monopole
Keywords: Kronecker series, modular invariance.
Keywords: Kronecker series, modular invariance.
@article{TMF_2012_172_3_a5,
author = {K. M. Bulycheva},
title = {Monopole solutions as three-dimensional generalizations of {Kronecker}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {403--414},
publisher = {mathdoc},
volume = {172},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a5/}
}
K. M. Bulycheva. Monopole solutions as three-dimensional generalizations of Kronecker. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 403-414. http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a5/