Semidiscrete Toda lattices
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 387-402
Voir la notice de l'article provenant de la source Math-Net.Ru
We study integrable cutoff constraints for a semidiscrete Toda lattice. We construct a Lax representation for a semidiscrete analogue of lattices corresponding to simple Lie algebras of the $C$ series. We introduce nonlocal variables in terms of which the symmetries of the infinite semidiscrete lattice can be expressed, and we classify cutoff constraints of a certain form compatible with the symmetries of the infinite lattice.
Keywords:
semidiscrete Toda lattice, Lax representation, symmetry,
integrable cutoff constraint.
@article{TMF_2012_172_3_a4,
author = {S. V. Smirnov},
title = {Semidiscrete {Toda} lattices},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {387--402},
publisher = {mathdoc},
volume = {172},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a4/}
}
S. V. Smirnov. Semidiscrete Toda lattices. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 387-402. http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a4/