Using the concept of natural geometry in the nonlinear electrodynamics of the vacuum
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 505-512 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the concept of natural geometry for a physical field. We show that using this concept to solve problems of nonlinear electrodynamics allows simply studying basic effects of nonlinear electrodynamics arising when weak electromagnetic waves propagate in external electromagnetic fields.
Keywords: physical field, natural geometry, metric tensor, equation of a ray.
@article{TMF_2012_172_3_a12,
     author = {V. I. Denisov and I. P. Denisova and V. A. Sokolov},
     title = {Using the~concept of natural geometry in the~nonlinear electrodynamics of the~vacuum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {505--512},
     year = {2012},
     volume = {172},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a12/}
}
TY  - JOUR
AU  - V. I. Denisov
AU  - I. P. Denisova
AU  - V. A. Sokolov
TI  - Using the concept of natural geometry in the nonlinear electrodynamics of the vacuum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 505
EP  - 512
VL  - 172
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a12/
LA  - ru
ID  - TMF_2012_172_3_a12
ER  - 
%0 Journal Article
%A V. I. Denisov
%A I. P. Denisova
%A V. A. Sokolov
%T Using the concept of natural geometry in the nonlinear electrodynamics of the vacuum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 505-512
%V 172
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a12/
%G ru
%F TMF_2012_172_3_a12
V. I. Denisov; I. P. Denisova; V. A. Sokolov. Using the concept of natural geometry in the nonlinear electrodynamics of the vacuum. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 505-512. http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a12/

[1] A. A. Logunov, Lektsii po teorii otnositelnosti i gravitatsii, M., 1987 | MR | Zbl

[2] N. I. Lobachevskii, Polnoe sobranie sochinenii, v. 2, Geometriya. Novye nachala geometrii s polnoi teoriei parallelnykh, Gostekhizdat, M., L., 1949

[3] M. Born, L. Infeld, Proc. Roy. Soc. Lond. Ser. A, 144:852 (1934), 425–451 | DOI | Zbl

[4] W. Heisenberg, H. Euler, Z. Phys., 89:11–12 (1936), 714–732 | DOI | Zbl

[5] N. B. Narozhnyi, ZhETF, 55 (1968), 714–721

[6] I. M. Ternov, V. R. Khalilov, V. N. Rodionov, Vzaimodeistvie zaryazhennykh chastits s silnym elektromagnitnym polem, Izd-vo MGU, M., 1982

[7] V. I. Denisov, I. P. Denisova, Dokl. RAN, 378:4 (2001), 463–465 | DOI | Zbl

[8] V. I. Denisov, S. I. Svertilov, Phys. Rev. D, 71:6 (2005), 063002, 13 pp. | DOI

[9] V. I. Denisov, ZhETF, 74:2 (1978), 401–407

[10] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, Mir, M., 1977 | MR