The functional integral in the Hubbard model
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 479-496 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a new functional integral approach proposed for the model, we find the regime with a deformed integration measure in which the standard integral is replaced with the Jackson integral. We indicate the relation to a $p$-adic functional integral. For the magnetic and electronic subsystems in the effective functional that results from the operator formulation of the Hubbard model, we find the two-parametric quantum derivative resulting in the appearance of the quantum $SU_{rq}(2)$ group. We establish the relation to the one-parametric quantum derivative and to the standard derivative.
Keywords: strongly correlated system, Hubbard model, $p$-adic functional integral.
@article{TMF_2012_172_3_a10,
     author = {V. M. Zharkov},
     title = {The~functional integral in {the~Hubbard} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {479--496},
     year = {2012},
     volume = {172},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a10/}
}
TY  - JOUR
AU  - V. M. Zharkov
TI  - The functional integral in the Hubbard model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 479
EP  - 496
VL  - 172
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a10/
LA  - ru
ID  - TMF_2012_172_3_a10
ER  - 
%0 Journal Article
%A V. M. Zharkov
%T The functional integral in the Hubbard model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 479-496
%V 172
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a10/
%G ru
%F TMF_2012_172_3_a10
V. M. Zharkov. The functional integral in the Hubbard model. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 479-496. http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a10/

[1] J. Hubbard, Proc. Roy. Soc. Lond. Ser. A, 276:1365 (1963), 238–257 | DOI

[2] Yu. A. Izyumov, M. I. Katsnelson, Yu. N. Skryabin, Magnetizm kollektivizirovannykh elektronov, Fizmatlit, M., 1994

[3] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, G. Saito, Phys. Rev. Lett., 91:10 (2003), 107001, 4 pp., arXiv: cond-mat/0307483 | DOI

[4] W. Hu, J. Jiang, Y. Nakashima et al., Phys. Rev. Lett., 96:2 (2006), 027801, 4 pp. | DOI

[5] V. V. Ustinov, M. A. Milyaev, L. N. Romashev, T. P. Krinitsina, A. M. Burkhanov, V. V. Lauter-Pasyuk, H. J. Lauter, Phys. Stat. Sol., 3:5 (2006), 1249–1256 | DOI

[6] L. Cheng, P. Cheng, C. K. Ong, Appl. Phys. Lett., 80:6 (2002), 1025–1027 | DOI

[7] J. Armstrong, S. Z. Hua, H. D. Chopra, Phys. Rev. B, 82:19 (2010), 195416, 11 pp., arXiv: 1110.4908 | DOI

[8] V. Zharkov, Proceedings of the 9th Int. Symp. on Crystalline Organic Metals, Superconductors and Ferromagnets (ISCOM 2011) (Poznań – Gniezno, Poland, September 25–30, 2011), Poznan

[9] V. Zharkov, Phys. Stat. Sol. C, 9:5 (2012), 1219–1221, arXiv: 1111.6476 | DOI

[10] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | Zbl

[11] V. M. Zharkov, TMF, 90:1 (1992), 75–83 ; New functional representation for Hubbard model, coherent state and tower of algebras, arXiv: cond-mat/9612033 | DOI | MR

[12] V. M. Zharkov, V. S. Kirchanov, TMF, 166:2 (2011), 245–260 | DOI | Zbl

[13] M. Hermele, Phys. Rev. B, 76:3 (2007), 035125, 28 pp., arXiv: cond-mat/0701134 | DOI

[14] K.-S Kim, Phys. Rev. Lett., 97:13 (2006), 136402, 4 pp., arXiv: ; K.-S. Kim, J. H. Han, Slave rotor theory of antiferromagnetic Hubbard model, arXiv: ; K.-S. Kim, Phys. Rev. B, 75:24 (2007), 245105, 16 pp., arXiv: cond-mat/0603473cond-mat/0605266cond-mat/0609415 | DOI | DOI

[15] V. M. Zharkov, TMF, 60:3 (1984), 404–412 ; 86:2 (1991), 262–271 | DOI | MR | DOI | MR

[16] V. Yu. Irkhin, Phys. met. Metallography, 110:7 (2010), 602–641 | DOI

[17] V. M. Zharkov, V. S. Kirchanov, New path integral representation for Hubbard model: I. Supercoherent state, arXiv: 1002.3043

[18] D. B. Uglov, V. E. Korepin, Phys. Lett. A, 190:3–4 (1994), 238–242, arXiv: hep-th/9310158 | DOI | MR | Zbl

[19] N. P. Konopleva, V. N. Popov, Kalibrovochnye polya, Editorial URSS, M., 2000 | MR

[20] R. Chakrabarti, R. Jagannathan, J. Phys. A. Math. Gen., 24:13 (1991), L711–7718 ; V. M. Zharkov, Superstring representation of Hubbard model, arXiv: cond-mat/0202313 | DOI | MR

[21] V. Chari, A. Pressley, A guide to Quantum Qroup, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[22] V. G. Kats, P. Cheng, Kvantovyi analiz, MTsNMO, M., 2005 | MR