@article{TMF_2012_172_3_a1,
author = {Zhonghao Xu and Ya. Higuchi and Chunhua},
title = {A~strong law of large numbers for random biased connected graphs},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {344--354},
year = {2012},
volume = {172},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a1/}
}
TY - JOUR AU - Zhonghao Xu AU - Ya. Higuchi AU - Chunhua TI - A strong law of large numbers for random biased connected graphs JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 344 EP - 354 VL - 172 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a1/ LA - ru ID - TMF_2012_172_3_a1 ER -
Zhonghao Xu; Ya. Higuchi; Chunhua. A strong law of large numbers for random biased connected graphs. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 344-354. http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a1/
[1] P. Erdős, A. Rényi, Publ. Math. Debrecen, 6 (1959), 290–297 | MR | Zbl
[2] P. Erdős, A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. Ser. A, 5 (1960), 17–61 | MR | Zbl
[3] P. Erdős, A. Rényi, Bull. Inst. Internat. Statist., 38:4 (1961), 343–347 | MR | Zbl
[4] Z. H. Xu, Y. Higuchi, Sci. China Ser. A, 42:8 (2012), 821–826
[5] G. Grimmett, Percolation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321, 2nd ed., Springer, Berlin, 1999 | DOI | MR | Zbl
[6] B. Bollobás, O. Riordan, Percolation, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[7] K. Kuulasmaa, J. Appl. Probab., 19:4 (1982), 745–758 | DOI | MR | Zbl
[8] Z. H. Xu, D. Han, Chinese J. Appl. Probab. Statist., 26:6 (2010), 649–661 | MR | Zbl
[9] M. D. Penrose, Random Geometric Graphs, Oxford Studies in Probability, 5, Oxford Univ. Press, Oxford, 2003 | MR | Zbl
[10] I. Benjamini, N. Berger, Random Structures Algorithms, 19:2 (2001), 102–111 | DOI | MR | Zbl
[11] D. Coppersmith, D. Gamarnik, M. Sviridenko, Random Structures Algorithms, 21:1 (2002), 1–13 | DOI | MR | Zbl
[12] M. Biskup, Random Structures Algorithms, 39:2 (2011), 210–227 | DOI | MR | Zbl
[13] M. D. Penrose, Stochastic Process. Appl., 85:2 (2000), 295–320 | DOI | MR | Zbl
[14] F. Xue, P. R. Kumar, Wireless Networks, 10:2 (2004), 169–181 | DOI
[15] S. H. Teng, F. F. Yao, Algorithmica, 49:3 (2007), 192–211 | DOI | MR | Zbl
[16] R. Meester, R. Roy, Continuum Percolation, Cambridge Tracts in Mathematics, 119, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[17] R. A. Dwyer, Comput. Geom., 5:3 (1995), 155–164 | DOI | MR | Zbl
[18] G. T. Toussaint, Pattern Recognition, 12:4 (1980), 261–268 | DOI | MR | Zbl
[19] P. J. Bickel, L. Breiman, Ann. Probab., 11 (1983), 185–214 | DOI | MR | Zbl
[20] D. Evans, A. J. Jones, Proc. Roy. Soc. London Ser. A, 458:2027 (2002), 2759–2799 | DOI | MR | Zbl
[21] N. Henze, Adv. Appl. Probab., 19:4 (1987), 873–895 | DOI | MR | Zbl
[22] P. Baldi, Y. Rinott, Ann. Probab., 17:4 (1989), 1646–1650 | DOI | MR | Zbl
[23] G. L. Miller, S. H. Teng, S. Vavasis, “A unified geometric approach to graph separators”, Proceedings of the 32nd Annual Symposium on Foundation of Computer Science (San Juan, Puerto Rico, October 1–4, 1991), IEEE Comput. Soc. Press, Los Alamitos, CA, 1991, 538–547 | DOI | MR
[24] B. Efron, C. Stein, Ann. Statist., 9 (1981), 586–596 | DOI | MR | Zbl
[25] D. Evans, A. J. Jones, W. M. Schmidt, Proc. Roy. Soc. London Ser. A, 458:2028 (2002), 2839–2849 | DOI | MR | Zbl