A strong law of large numbers for random biased connected graphs
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 344-354 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of random connected graphs with random vertices and random edges in which the randomness of the vertices is determined by a continuous probability distribution and the randomness of the edges is determined by a connection function. We derive a strong law of large numbers on the total lengths of all random edges for a random biased connected graph that is a generalization of a directed $k$-nearest-neighbor graph.
Keywords: random connected graph, random biased connected graph, law of large numbers.
@article{TMF_2012_172_3_a1,
     author = {Zhonghao Xu and Ya. Higuchi and Chunhua},
     title = {A~strong law of large numbers for random biased connected graphs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {344--354},
     year = {2012},
     volume = {172},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a1/}
}
TY  - JOUR
AU  - Zhonghao Xu
AU  - Ya. Higuchi
AU  - Chunhua
TI  - A strong law of large numbers for random biased connected graphs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 344
EP  - 354
VL  - 172
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a1/
LA  - ru
ID  - TMF_2012_172_3_a1
ER  - 
%0 Journal Article
%A Zhonghao Xu
%A Ya. Higuchi
%A Chunhua
%T A strong law of large numbers for random biased connected graphs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 344-354
%V 172
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a1/
%G ru
%F TMF_2012_172_3_a1
Zhonghao Xu; Ya. Higuchi; Chunhua. A strong law of large numbers for random biased connected graphs. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 344-354. http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a1/

[1] P. Erdős, A. Rényi, Publ. Math. Debrecen, 6 (1959), 290–297 | MR | Zbl

[2] P. Erdős, A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. Ser. A, 5 (1960), 17–61 | MR | Zbl

[3] P. Erdős, A. Rényi, Bull. Inst. Internat. Statist., 38:4 (1961), 343–347 | MR | Zbl

[4] Z. H. Xu, Y. Higuchi, Sci. China Ser. A, 42:8 (2012), 821–826

[5] G. Grimmett, Percolation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321, 2nd ed., Springer, Berlin, 1999 | DOI | MR | Zbl

[6] B. Bollobás, O. Riordan, Percolation, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[7] K. Kuulasmaa, J. Appl. Probab., 19:4 (1982), 745–758 | DOI | MR | Zbl

[8] Z. H. Xu, D. Han, Chinese J. Appl. Probab. Statist., 26:6 (2010), 649–661 | MR | Zbl

[9] M. D. Penrose, Random Geometric Graphs, Oxford Studies in Probability, 5, Oxford Univ. Press, Oxford, 2003 | MR | Zbl

[10] I. Benjamini, N. Berger, Random Structures Algorithms, 19:2 (2001), 102–111 | DOI | MR | Zbl

[11] D. Coppersmith, D. Gamarnik, M. Sviridenko, Random Structures Algorithms, 21:1 (2002), 1–13 | DOI | MR | Zbl

[12] M. Biskup, Random Structures Algorithms, 39:2 (2011), 210–227 | DOI | MR | Zbl

[13] M. D. Penrose, Stochastic Process. Appl., 85:2 (2000), 295–320 | DOI | MR | Zbl

[14] F. Xue, P. R. Kumar, Wireless Networks, 10:2 (2004), 169–181 | DOI

[15] S. H. Teng, F. F. Yao, Algorithmica, 49:3 (2007), 192–211 | DOI | MR | Zbl

[16] R. Meester, R. Roy, Continuum Percolation, Cambridge Tracts in Mathematics, 119, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[17] R. A. Dwyer, Comput. Geom., 5:3 (1995), 155–164 | DOI | MR | Zbl

[18] G. T. Toussaint, Pattern Recognition, 12:4 (1980), 261–268 | DOI | MR | Zbl

[19] P. J. Bickel, L. Breiman, Ann. Probab., 11 (1983), 185–214 | DOI | MR | Zbl

[20] D. Evans, A. J. Jones, Proc. Roy. Soc. London Ser. A, 458:2027 (2002), 2759–2799 | DOI | MR | Zbl

[21] N. Henze, Adv. Appl. Probab., 19:4 (1987), 873–895 | DOI | MR | Zbl

[22] P. Baldi, Y. Rinott, Ann. Probab., 17:4 (1989), 1646–1650 | DOI | MR | Zbl

[23] G. L. Miller, S. H. Teng, S. Vavasis, “A unified geometric approach to graph separators”, Proceedings of the 32nd Annual Symposium on Foundation of Computer Science (San Juan, Puerto Rico, October 1–4, 1991), IEEE Comput. Soc. Press, Los Alamitos, CA, 1991, 538–547 | DOI | MR

[24] B. Efron, C. Stein, Ann. Statist., 9 (1981), 586–596 | DOI | MR | Zbl

[25] D. Evans, A. J. Jones, W. M. Schmidt, Proc. Roy. Soc. London Ser. A, 458:2028 (2002), 2839–2849 | DOI | MR | Zbl