A~strong law of large numbers for random biased connected graphs
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 344-354
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a class of random connected graphs with random vertices and random edges in which the randomness of the vertices is determined by a continuous probability distribution and the randomness of the edges is determined by a connection function. We derive a strong law of large numbers on the total lengths of all random edges for a random biased connected graph that is a generalization of a directed $k$-nearest-neighbor graph.
Keywords:
random connected graph, random biased connected graph, law of large numbers.
@article{TMF_2012_172_3_a1,
author = {Zhonghao Xu and Ya. Higuchi and Chunhua},
title = {A~strong law of large numbers for random biased connected graphs},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {344--354},
publisher = {mathdoc},
volume = {172},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a1/}
}
TY - JOUR AU - Zhonghao Xu AU - Ya. Higuchi AU - Chunhua TI - A~strong law of large numbers for random biased connected graphs JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 344 EP - 354 VL - 172 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a1/ LA - ru ID - TMF_2012_172_3_a1 ER -
Zhonghao Xu; Ya. Higuchi; Chunhua. A~strong law of large numbers for random biased connected graphs. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 3, pp. 344-354. http://geodesic.mathdoc.fr/item/TMF_2012_172_3_a1/