Tronquée solutions of the Painlevé II equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 296-307 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study special solutions of the Painlevé II (PII) equation called tronquée solutions, i.e., those having no poles along one or more critical rays in the complex plane. They are parameterized by special monodromy data of the Lax pair equations. The manifold of the monodromy data for a general solution is a two-dimensional complex manifold with one- and zero-dimensional singularities, which arise because there is no global parameterization of the manifold. We show that these and only these singularities (together with zeros of the parameterization) are related to the tronquée solutions of the PII equation. As an illustration, we consider the known Hastings–McLeod and Ablowitz–Segur solutions and some other solutions to show that they belong to the class of tronquée solutions and correspond to one or another type of singularity of the monodromy data.
Mots-clés : Painlevé equation, tronquée solution, distribution of poles
Keywords: Riemann–Hilbert problem, anharmonic oscillator, Bohr–Sommerfeld quantization, complex WKB method.
@article{TMF_2012_172_2_a9,
     author = {V. Yu. Novokshenov},
     title = {Tronqu\'ee solutions of {the~Painlev\'e} {II} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {296--307},
     year = {2012},
     volume = {172},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a9/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - Tronquée solutions of the Painlevé II equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 296
EP  - 307
VL  - 172
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a9/
LA  - ru
ID  - TMF_2012_172_2_a9
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T Tronquée solutions of the Painlevé II equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 296-307
%V 172
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a9/
%G ru
%F TMF_2012_172_2_a9
V. Yu. Novokshenov. Tronquée solutions of the Painlevé II equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 296-307. http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a9/

[1] P. Boutroux, Ann. Sci. École Norm. Sup., 30 (1913), 255–375 ; 31 (1914), 99–159 | DOI | MR | Zbl | DOI | MR | Zbl

[2] A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, A. S. Fokas, Transtsendenty Penleve. Metod zadachi Rimana, izd-vo RKhD, M., 2005 | MR | Zbl

[3] V. Yu. Novokshenov, TMF, 159:3 (2009), 515–526 | DOI | MR | Zbl

[4] S. P. Hastings, J. B. McLeod, Arch. Ration. Mech. Anal., 73:1 (1980), 31–51 | DOI | MR | Zbl

[5] M. J. Ablowitz, H. Segur, Studies Appl. Math., 57:1 (1977), 13–44 | DOI | MR | Zbl

[6] A. R. Its, V. Yu. Novokshenov, The Isomonodromy Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Mathematics, 1191, Springer, Berlin, 1986 | DOI | MR | Zbl

[7] V. Yu. Novokshenov, Izv. AN SSSR. Ser. matem., 54:6 (1990), 1229–1251 | DOI | MR | Zbl

[8] A. Kapaev, Phys. Lett. A., 167:4 (1992), 356–362 | DOI | MR

[9] H. Flaschka, A. C. Newell, Commun. Math. Phys., 76:1 (1980), 65–116 | DOI | MR | Zbl

[10] C. M. Bender, T. T. Wu, Phys. Rev., 184:5 (1969), 1231–1260 | DOI | MR

[11] A. A. Kapaev, J. Phys. A., 37:46 (2004), 11149–11167, arXiv: nlin/0404026 | DOI | MR | Zbl

[12] S. Olver, RHPackage (A Mathematica package for computing solutions to matrix-valued Riemann–Hilbert problems),\par, 2011 http://www.maths.usyd.edu.au/u/olver/projects/RHPackage.html

[13] M. Bertola, Nonlinearity, 25:4 (2012), 1179–1186 | DOI | MR | Zbl

[14] B. Dubrovin, T. Grava, C. Klein, J. Nonlinear Sci., 19:1 (2009), 57–94 | DOI | MR | Zbl