Classification of discrete systems on a square lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 250-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the classification up to a Möbius transformation of real linearizable and integrable partial difference equations with dispersion defined on a square lattice by the multiscale reduction around their harmonic solution. We show that the $A_1$, $A_2$, and $A_3$ linearizability and integrability conditions constrain the number of parameters in the equation, but these conditions are insufficient for a complete characterization of the subclass of multilinear equations on a square lattice.
Mots-clés : multiscale expansion
Keywords: difference equation, integrable model, linearizable model.
@article{TMF_2012_172_2_a5,
     author = {R. Hernandez Heredero and D. Levi and Ch. Scimiterna},
     title = {Classification of discrete systems on a~square lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {250--263},
     year = {2012},
     volume = {172},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a5/}
}
TY  - JOUR
AU  - R. Hernandez Heredero
AU  - D. Levi
AU  - Ch. Scimiterna
TI  - Classification of discrete systems on a square lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 250
EP  - 263
VL  - 172
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a5/
LA  - ru
ID  - TMF_2012_172_2_a5
ER  - 
%0 Journal Article
%A R. Hernandez Heredero
%A D. Levi
%A Ch. Scimiterna
%T Classification of discrete systems on a square lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 250-263
%V 172
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a5/
%G ru
%F TMF_2012_172_2_a5
R. Hernandez Heredero; D. Levi; Ch. Scimiterna. Classification of discrete systems on a square lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 250-263. http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a5/

[1] F. Calogero, “Why are certain nonlinear PDEs both widely applicable and integrable?”, What is Integrability?, Springer Series in Nonlinear Dynamics, ed. V. E. Zakharov, Springer, Berlin, 1991, 1–62 | DOI | MR | Zbl

[2] A. Degasperis, S. V. Manakov, P. M. Santini, Physica D, 100:1–4 (1997), 187–211 | DOI | MR | Zbl

[3] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and perturbation theory, SPT98, eds. A. Degasperis, G. Gaeta, World Scientific, Singapore, 1999, 23–37 ; A. Degasperis, “Multiscale expansion and integrability of dispersive wave equations”, Integrability, Lecture Notes in Physics, 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 215–244 | MR | Zbl | DOI | MR | Zbl

[4] Y. Kodama, A. V. Mikhailov, “Obstacles to asymptotic integrability”, Algebraic Aspects of Integrable Systems, Progress in Nonlinear Differential Equations and their Applications, 26, eds. A. S. Fokas, I. M. Gelfand, Birkhäuser, Boston, MA, 1997, 173–204 ; Y. Hiraoka, Y. Kodama, “Normal form and solitons”, Integrability, Lecture Notes in Physics, 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 175–214 | MR | Zbl | DOI | MR | Zbl

[5] A. Degasperis, D. D. Kholm, A. Khon, TMF, 133:2 (2002), 170–183 | DOI | MR

[6] R. Hernández Heredero, D. Levi, M. Petrera, C. Scimiterna, J. Phys. A, 41:31 (2008), 315208, 12 pp. | DOI | MR | Zbl

[7] R. Hernández Heredero, D. Levi, M. Petrera, C. Scimiterna, J. Nonlinear Math. Phys., 15:suppl.3 (2008), 323–333 | MR

[8] D. Levi, J. Phys. A, 38:35 (2005), 7677–7689, arXiv: nlin/0505061 | DOI | MR | Zbl

[9] M. Agrotis, S. Lafortune, P. G. Kevrekidis, Discrete Contin. Dyn. Syst., suppl. (2005), 22–29 | MR | Zbl

[10] R. Hernández Heredero, D. Levi, M. Petrera, C. Scimiterna, J. Phys. A, 40:34 (2007), F831–F840 | DOI | MR | Zbl

[11] J. Leon, M. Manna, J. Phys. A, 32:15 (1999), 2845–2869 | DOI | MR | Zbl

[12] D. Levi, R. Hernández Heredero, J. Nonlinear Math. Phys., 12:suppl. 1 (2005), 440–448 | DOI | MR

[13] D. Levi, M. Petrera, J. Math. Phys., 47:4 (2006), 043509, 20 pp., arXiv: math-ph/0510084 | DOI | MR | Zbl

[14] S. W. Schoombie, J. Comput. Phys., 101:1 (1992), 55–70 | DOI | MR | Zbl

[15] F. Calogero, W. Eckhaus, Inverse Problems, 3:2 (1987), L27–L32 ; 3:2 (1987), 229–262 ; 4:1 (1987), 11–33 ; F. Calogero, A. Degasperis, X. Ji, J. Math. Phys., 42:6 (2001), 2635–2652 ; 41:9 (2000), 6399–6443 ; F. Calogero, A. Maccari, “Equations of nonlinear Schrödinger type in $1+1$ and $2+1$ dimensions obtained from integrable PDEs”, Inverse Problems: an Interdisciplinary Study, Proceedings of the meeting (Montpellier, December 1–5, 1986), Advances in Electronics and Electron Physics, suppl. 19, ed. P. C. Sabatier, Academic Press, London, 1987, 463–480 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | MR

[16] C. Scimiterna, D. Levi, SIGMA, 6 (2010), 070, 17 pp., arXiv: 1005.5288 | DOI | MR | Zbl

[17] R. Hernández Heredero, D. Levi, C. Scimiterna, J. Phys. A, 43:50 (2010), 502002, 14 pp., arXiv: 1011.0141 | DOI | MR | Zbl

[18] C. Scimiterna, Multiscale techniques for nonlinear difference equations, Ph. D. thesis, Roma Tre Universitá Degli Studi, Rome (Italy), 2009, \par http://www.fis.uniroma3.it/dottorato_tesi/Scimiterna_SCIMITERNA.pdf

[19] Y. Kodama, Phys. Lett. A, 107:6 (1985), 245–249 | DOI | MR | Zbl

[20] Y. Kodama, “Nearly integrable systems: normal form and solitons”, Nonlinear Evolutions, Proceedings of the Fourth Workshop on Nonlinear Evolution Equations and Dynamical Systems (Balaruc-les-Bains, June 11–25, 1987), ed. J. J. P. Leon, World Scientific, Teaneck, NJ, 1988, 559–570 | MR

[21] M. Procesi, Non linear waves, multiscale methods and integrability master degree, Ph.D. thesis, Physics Department, “La Sapienza” University, Rome, 1997

[22] D. Levi, C. Scimiterna, Appl. An., 89:4 (2010), 507–527 | DOI | MR | Zbl

[23] D. Levi, C. Scimiterna, SIGMA, 7 (2011), 079, 24 pp. | DOI | Zbl

[24] D. Levi, R. I. Yamilov, J. Phys. A, 42:45 (2009), 454012, 18 pp., arXiv: ; 44:14 (2011), 145207, 22 pp., arXiv: 0902.44211011.0070 | DOI | MR | Zbl | DOI | MR | Zbl

[25] C. Scimiterna, B. Grammaticos, A. Ramani, J. Phys. A, 44:3 (2011), 032002, 6 pp. | DOI | MR | Zbl

[26] V. E. Adler, A. I. Bobenko, Yu. B. Suris, Commun. Math. Phys., 233:3 (2003), 513–543, arXiv: nlin/0202024 | DOI | MR | Zbl