Two-dimensional Toda field equations related to the exceptional algebra $\mathfrak g_2$: Spectral properties of the Lax operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 236-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze spectral properties of the Lax operator corresponding to the two-dimensional Toda field equations related to the algebra $\mathfrak g_2$. We construct two minimal sets of scattering data $\mathcal T_s$, $s=1,2$, understanding the map between the potential and each of the sets $\mathcal T_s$ as a generalized Fourier transformation. We construct explicit recursion operators with special factorization properties.
Keywords: Toda field theory, recursion operator, generalized Fourier transformation.
Mots-clés : spectral decomposition
@article{TMF_2012_172_2_a4,
     author = {V. S. Gerdjikov},
     title = {Two-dimensional {Toda} field equations related to the~exceptional algebra $\mathfrak g_2$: {Spectral} properties of {the~Lax} operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {236--249},
     year = {2012},
     volume = {172},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a4/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
TI  - Two-dimensional Toda field equations related to the exceptional algebra $\mathfrak g_2$: Spectral properties of the Lax operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 236
EP  - 249
VL  - 172
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a4/
LA  - ru
ID  - TMF_2012_172_2_a4
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%T Two-dimensional Toda field equations related to the exceptional algebra $\mathfrak g_2$: Spectral properties of the Lax operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 236-249
%V 172
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a4/
%G ru
%F TMF_2012_172_2_a4
V. S. Gerdjikov. Two-dimensional Toda field equations related to the exceptional algebra $\mathfrak g_2$: Spectral properties of the Lax operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 236-249. http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a4/

[1] M. Boiti, L. Martina, F. Pempinelli (eds.), Nonlinear Evolution Equations and Dynamical Systems, Proceedings of the Seventh Workshop (NEEDS'91) (Baia Verde, June 19–29, 1991), World Scientific, Singapore, 1992 | MR | Zbl

[2] F. Calogero, A. Degasperis, Spectral Transform and Solitons, v. 1, Studies in Mathematics and its Applications, 13, Tools to Solve and Investigate Nonlinear Evolution Equations, North-Holland, Amsterdam, New York, 1982 | MR | Zbl

[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[4] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1990 | MR | Zbl

[5] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski (eds.), Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, 748, Springer, Berlin, 2008 | DOI | MR | Zbl

[6] V. E. Zakharov, A. V. Mikhailov, ZhETF, 74:6 (1978), 1953–1973 | MR

[7] V. E. Zakharov, A. V. Mikhailov, Commun. Math. Phys., 74:1 (1980), 21–40 | DOI | MR

[8] A. P. Fordy, P. P. Kulish, Commun. Math. Phys., 89:3 (1983), 427–443 | DOI | MR | Zbl

[9] M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, TMF, 165:1 (2010), 3–24, arXiv: 0911.1675 | DOI | Zbl

[10] M. Boiti, F. Pempinelli, A. Pogrebkov, B. Prinari, Inverse Probl., 17:4 (2001), 937–957, arXiv: nlin/0101030 | DOI | MR | Zbl

[11] V. G. Drinfeld, V. V. Sokolov, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | DOI | MR | Zbl

[12] A. V. Mikhailov, Pisma v ZhETF, 30:7 (1979), 443–448

[13] A. V. Mikhailov, Physica D, 3:1–2 (1981), 73–117 | DOI | Zbl

[14] N. Burbaki, Gruppy i algebry Li, Ch. 2. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei, Mir, M., 1972 | MR | Zbl

[15] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, 34, AMS, Providence, RI, 2001 | DOI | MR | Zbl

[16] V. S. Gerdjikov, A. B. Yanovski, Commun. Math. Phys., 103:4 (1986), 549–568 | DOI | MR | Zbl

[17] P. J. Caudrey, Phys. Lett. A, 79:4 (1980), 264–268 ; Physica D, 6:1 (1982), 51–66 | DOI | MR | DOI | MR | Zbl

[18] R. Beals, R. R. Coifman, Commun. Pure Appl. Math., 37:1 (1984), 39–90 ; 38:1 (1985), 29–42 | DOI | MR | Zbl | DOI | MR | Zbl

[19] R. Beals, D. Sattinger, Commun. Math. Phys., 138:3 (1991), 409–436, arXiv: math/9712253 | DOI | MR | Zbl

[20] G. G. Grahovski, “On the reductions and scattering data for the CBC system”, Proceedings of the 3rd International Conference on Geometry, Integrability and Quantization (Varna, Bulgaria, June 14–23, 2001), eds. I. M. Mladenov, L. N. Naber, Coral Press Scientific, Sofia, 2002, 262–277 ; “On the reductions and scattering data for the generalized Zakharov–Shabat systems”, Nonlinear Physics: Theory and Experiment. II (Gallipoli, Italy, June 27 – July 6, 2002), eds. M. J. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari, World Scientific, Singapore, 2003, 71–78 | MR | Zbl | DOI | MR | Zbl

[21] T. Valchev, J. Geom. Symmetry Phys., 19 (2010), 73–86 | MR | Zbl

[22] V. S. Gerdjikov, A. B. Yanovski, J. Math. Phys., 35:7 (1994), 3687–3725 | DOI | MR | Zbl

[23] V. S. Gerdjikov, Inverse Probl., 2:1 (1986), 51–74 | DOI | MR | Zbl

[24] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl

[25] D. J. Kaup, J. Math. Ann. Appl., 54:3 (1976), 849–864 | DOI | MR | Zbl

[26] V. S. Gerdjikov, E. Kh. Khristov, Bulg. J. Phys., 7:1 (1980), 28–41 | MR

[27] V. S. Gerdjikov, P. P. Kulish, Physica D, 3:3 (1981), 549–564 | DOI | MR | Zbl

[28] D. J. Kaup, A. C. Newell, Adv. Math., 31:1 (1979), 67–100 | DOI | MR | Zbl

[29] V. S. Gerdjikov, “Algebraic and analytic aspects of soliton type equations”, The Legacy of the Inverse Scattering Transform in Applied Mathematics (South Hadley, MA, USA, June 17–21, 2001), Contemporary Mathematics, 301, eds. J. Bona, S. R. Choudhury, D. J. Kaup, AMS, Providence, RI, 2002, 35–68 | DOI | MR | Zbl

[30] A. V. Mikhailov, M. Olshanetsky, A. M. Perelomov, Commun. Math. Phys., 79:4 (1981), 473–490 | DOI | MR

[31] V. S. Gerdjikov, “$Z_N$-reductions and new integrable versions of derivative nonlinear Schrödinger equations”, Nonlinear Evolution Equations: Integrability and Spectral Methods, ed. A. P. Fordy, A. Degasperis, M. Lakshmanan, Manchester Univ. Press, Manchester, 1981, 367–379

[32] D. Olive, N. Turok, J. W. R. Underwood, Nucl. Phys. B, 401:3 (1993), 663–697 | DOI | MR | Zbl