Keywords: subequation method, complex quintic Ginzburg–Landau equation.
@article{TMF_2012_172_2_a3,
author = {R. Conte and Tuen-Wai Ng},
title = {Detection and construction of an~elliptic solution of the~complex cubic{\textendash}quintic {Ginzburg{\textendash}Landau} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {224--235},
year = {2012},
volume = {172},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a3/}
}
TY - JOUR AU - R. Conte AU - Tuen-Wai Ng TI - Detection and construction of an elliptic solution of the complex cubic–quintic Ginzburg–Landau equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2012 SP - 224 EP - 235 VL - 172 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a3/ LA - ru ID - TMF_2012_172_2_a3 ER -
%0 Journal Article %A R. Conte %A Tuen-Wai Ng %T Detection and construction of an elliptic solution of the complex cubic–quintic Ginzburg–Landau equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2012 %P 224-235 %V 172 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a3/ %G ru %F TMF_2012_172_2_a3
R. Conte; Tuen-Wai Ng. Detection and construction of an elliptic solution of the complex cubic–quintic Ginzburg–Landau equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 224-235. http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a3/
[1] I. S. Aranson, L. Kramer, Rev. Mod. Phys., 74:1 (2002), 99–143, arXiv: cond-mat/0106115 | DOI | MR | Zbl
[2] W. van Saarloos, Phys. Rep., 386:2–6 (2003), 29–222, arXiv: cond-mat/0308540 | DOI | Zbl
[3] A. V. Klyachkin, Modulational instability and autowaves in the active media described by the nonlinear equations of Ginzburg–Landau type, preprint No 1338, Ioffe Physical Technical Institute, Leningrad, 1989
[4] M. Musette, R. Conte, Physica D, 181:1–2 (2003), 70–79, arXiv: nlin.PS/0302051 | DOI | MR | Zbl
[5] R. M. Kont, M. Myuzett, Metod Penleve i ego prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, IKI, M., 2011 | MR | Zbl
[6] R. Conte, M. Musette, Stud. Appl. Math., 123:1 (2009), 63–81, arXiv: 0903.2009 | DOI | MR | Zbl
[7] J. Chazy, Acta Math., 34:1 (1911), 317–385 | DOI | MR | Zbl
[8] P. Marcq, H. Chaté, R. Conte, Physica D, 73:4 (1994), 305–317, arXiv: patt-sol/9310004 | DOI | MR | Zbl
[9] A. N. W. Hone, Physica D, 205:1–4 (2005), 292–306 | DOI | MR | Zbl
[10] S. Yu. Vernov, J. Phys. A, 40 (2007), 9833–9844, arXiv: nlin/0602060 | DOI | MR | Zbl
[11] C. Briot, J.-C. Bouquet, Théorie des fonctions elliptiques, 1 ed., Mallet-Bachelier, Paris, 1859; 2 ed., Gauthier-Villars, Paris, 1875 | Zbl
[12] R. Conte, T. W. Ng, “Meromorphic traveling wave solutions of the complex cubic-quintic Ginzburg–Landau equation”, Acta Appl. Math., 2012 (in press) | MR
[13] G.-H. Halphen, Traité des fonctions elliptiques et de leurs applications, Gauthier–Villars, Paris, 1890 http://gallica.bnf.fr/document?O=N007348
[14] S. Popp, O. Stiller, I. Aranson, L. Kramer, Physica D, 84:3–4 (1995), 398–423 | DOI | MR | Zbl
[15] H. Chaté, Nonlinearity, 7:1 (1994), 185–204 | DOI | MR | Zbl
[16] J. Swift, P.Ċ. Hohenberg, Phys. Rev. A, 15:1 (1977), 319–328 | DOI