Mots-clés : isochronous discrete-time evolution.
@article{TMF_2012_172_2_a2,
author = {F. Calogero},
title = {On a~technique to identify solvable discrete-time many-body problems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {198--223},
year = {2012},
volume = {172},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a2/}
}
F. Calogero. On a technique to identify solvable discrete-time many-body problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 198-223. http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a2/
[1] F. Calogero, J. Math. Phys., 12:3 (1971), 419–436 ; Erratum, 37:7 (1996), 3646 | DOI | MR | DOI | MR | Zbl
[2] J. Moser, Adv. Math., 16:2 (1975), 197–220 | DOI | MR | Zbl
[3] M. A. Olshanetsky, A. M. Perelomov, Lett. Nuovo Cimento, 16:11 (1976), 333–339 | DOI | MR
[4] F. Calogero, Nuovo Cimento B, 43:2 (1978), 177–241 | DOI | MR
[5] F. Calogero, Physica D, 152/153 (2001), 78–84 | DOI | MR | Zbl
[6] S. N. M. Ruijsenaars, H. Schneider, Ann. Phys., 170:2 (1986), 370–405 | DOI | MR | Zbl
[7] F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments, Lecture Notes in Physics. New Series m: Monographs, 66, Springer, Berlin, 2001 | DOI | MR | Zbl
[8] F. Calogero, Isochronous Systems, Oxford Univ. Press, Oxford, 2008 | MR | Zbl
[9] F. Calogero, J. Nonlinear Math. Phys., 17:3 (2010), 397–414 | DOI | MR | Zbl
[10] F. Kalodzhero, TMF, 167:3 (2011), 364–376 | DOI
[11] F. Kalodzhero, TMF, 171:2 (2012), 241–253 | DOI
[12] F. Calogero, J. Math. Phys., 52:10 (2011), 102702, 5 pp. | DOI | MR | Zbl
[13] F. Calogero, J. Nonlinear Math. Phys., 19:1 (2012), 125006, 19 pp. | DOI | MR | Zbl
[14] A. P. Veselov, UMN, 46:5(281) (1991), 3–45 | DOI | MR | Zbl
[15] P. Clarkson, F. Nijhoff (eds.), Proceedings of the 2nd International Conference (SIDE II) (University of Kent at Canterbury, Canterbury, July 1–5, 1996), London Mathematical Society Lecture Notes Series, 255, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[16] Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | MR | Zbl
[17] O. Ragnisco, “Discrete integrable systems”, Encyclopedia of Mathematical Physics, v. 3, eds. J.-P. Françoise, G.L. Naber, T.S. Tsun, Elsevier, Oxford, 2006, 59–65 | MR | Zbl
[18] A. I. Bobenko, Yu. B. Suris, Discrete Differential Geometry. Integrable Structure, Graduate Studies in Mathematics, 98, AMS, Providence, RI, 2008 | DOI | MR | Zbl
[19] F. W. Nijhoff, G. D. Pang, Phys. Lett. A, 191:1–2 (1994), 101–107, arXiv: ; “Discrete-time Calogero–Moser model and lattice KP equations”, Symmetries and Integrability of Difference Equations, CRM Proceedings and Lecture Notes, 9, eds. D. Levi, L. Vinet, P. Winternitz, AMS, Providence, RI, 1996, 253–264 hep-th/9403052 | DOI | MR | Zbl | DOI | MR | Zbl
[20] F. W. Nijhoff, O. Ragnisco, V. B. Kuznetsov, Commun. Math. Phys., 176:3 (1996), 681–700, arXiv: hep-th/9412170 | DOI | MR | Zbl
[21] Yu. B. Suris, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 633–647 | DOI | MR
[22] F. Calogero, SIGMA, 7 (2011), 082, 35 pp., arXiv: 1108.4492 | Zbl
[23] D. Gomez-Ullate, M. Sommacal, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 351–362 | DOI | MR