On a technique to identify solvable discrete-time many-body problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 198-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The starting point is an $N{\times}N$ matrix, $U\equiv U(\ell)$, evolving in the discrete-time independent variable $\ell=0,1,2,\dots$ according to a solvable matrix evolution equation. One then focuses on the evolution of its $N$ eigenvalues $z_n(\ell)$. This evolution generally also involves $N(N{-}1)$ additional variables. In some cases via a compatible ansatz these additional variables can be expressed in terms of the $N$ variables $z_n(\ell)$. Thereby one obtains a system of discrete-time evolution equations involving only the $N$ dependent variables $z_n(\ell)$, which is often interpretable as a discrete-time many-body problem. Various peculiarities of this approach are investigated, including the possibility to manufacture nontrivial isochronous models (all solutions of which are periodic with the same period). These properties are illustrated via specific examples. In the process novel discrete-time many-body problems are exhibited.
Keywords: integrable discrete-time dynamical system, solvable discrete-time dynamical system, integrable discrete-time many-body problem, solvable discrete-time many-body problem
Mots-clés : isochronous discrete-time evolution.
@article{TMF_2012_172_2_a2,
     author = {F. Calogero},
     title = {On a~technique to identify solvable discrete-time many-body problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {198--223},
     year = {2012},
     volume = {172},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a2/}
}
TY  - JOUR
AU  - F. Calogero
TI  - On a technique to identify solvable discrete-time many-body problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 198
EP  - 223
VL  - 172
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a2/
LA  - ru
ID  - TMF_2012_172_2_a2
ER  - 
%0 Journal Article
%A F. Calogero
%T On a technique to identify solvable discrete-time many-body problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 198-223
%V 172
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a2/
%G ru
%F TMF_2012_172_2_a2
F. Calogero. On a technique to identify solvable discrete-time many-body problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 198-223. http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a2/

[1] F. Calogero, J. Math. Phys., 12:3 (1971), 419–436 ; Erratum, 37:7 (1996), 3646 | DOI | MR | DOI | MR | Zbl

[2] J. Moser, Adv. Math., 16:2 (1975), 197–220 | DOI | MR | Zbl

[3] M. A. Olshanetsky, A. M. Perelomov, Lett. Nuovo Cimento, 16:11 (1976), 333–339 | DOI | MR

[4] F. Calogero, Nuovo Cimento B, 43:2 (1978), 177–241 | DOI | MR

[5] F. Calogero, Physica D, 152/153 (2001), 78–84 | DOI | MR | Zbl

[6] S. N. M. Ruijsenaars, H. Schneider, Ann. Phys., 170:2 (1986), 370–405 | DOI | MR | Zbl

[7] F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments, Lecture Notes in Physics. New Series m: Monographs, 66, Springer, Berlin, 2001 | DOI | MR | Zbl

[8] F. Calogero, Isochronous Systems, Oxford Univ. Press, Oxford, 2008 | MR | Zbl

[9] F. Calogero, J. Nonlinear Math. Phys., 17:3 (2010), 397–414 | DOI | MR | Zbl

[10] F. Kalodzhero, TMF, 167:3 (2011), 364–376 | DOI

[11] F. Kalodzhero, TMF, 171:2 (2012), 241–253 | DOI

[12] F. Calogero, J. Math. Phys., 52:10 (2011), 102702, 5 pp. | DOI | MR | Zbl

[13] F. Calogero, J. Nonlinear Math. Phys., 19:1 (2012), 125006, 19 pp. | DOI | MR | Zbl

[14] A. P. Veselov, UMN, 46:5(281) (1991), 3–45 | DOI | MR | Zbl

[15] P. Clarkson, F. Nijhoff (eds.), Proceedings of the 2nd International Conference (SIDE II) (University of Kent at Canterbury, Canterbury, July 1–5, 1996), London Mathematical Society Lecture Notes Series, 255, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[16] Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | MR | Zbl

[17] O. Ragnisco, “Discrete integrable systems”, Encyclopedia of Mathematical Physics, v. 3, eds. J.-P. Françoise, G.L. Naber, T.S. Tsun, Elsevier, Oxford, 2006, 59–65 | MR | Zbl

[18] A. I. Bobenko, Yu. B. Suris, Discrete Differential Geometry. Integrable Structure, Graduate Studies in Mathematics, 98, AMS, Providence, RI, 2008 | DOI | MR | Zbl

[19] F. W. Nijhoff, G. D. Pang, Phys. Lett. A, 191:1–2 (1994), 101–107, arXiv: ; “Discrete-time Calogero–Moser model and lattice KP equations”, Symmetries and Integrability of Difference Equations, CRM Proceedings and Lecture Notes, 9, eds. D. Levi, L. Vinet, P. Winternitz, AMS, Providence, RI, 1996, 253–264 hep-th/9403052 | DOI | MR | Zbl | DOI | MR | Zbl

[20] F. W. Nijhoff, O. Ragnisco, V. B. Kuznetsov, Commun. Math. Phys., 176:3 (1996), 681–700, arXiv: hep-th/9412170 | DOI | MR | Zbl

[21] Yu. B. Suris, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 633–647 | DOI | MR

[22] F. Calogero, SIGMA, 7 (2011), 082, 35 pp., arXiv: 1108.4492 | Zbl

[23] D. Gomez-Ullate, M. Sommacal, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 351–362 | DOI | MR