Quantum Bäcklund transformations: Some ideas and examples
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 323-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a mechanical (Hamiltonian) interpretation of the so-called spectrality property introduced by Sklyanin and Kuznetsov in the context of Bäcklund transformations (BTs) for finite-dimensional integrable systems. This property turns out to be deeply connected with the Hamilton–Jacobi separation of variables and can lead to the explicit integration of the corresponding model using the BTs. We show that once such a construction is given, we can interpret the Baxter $Q$-operator defining the quantum BTs as the Green's function or the propagator of the time-dependent Schrödinger equation for an interpolating Hamiltonian.
Keywords: quantum Bäcklund transformation, spectrality property, integrable map, quantum propagator.
@article{TMF_2012_172_2_a11,
     author = {O. Ragnisco and F. Zullo},
     title = {Quantum {B\"acklund} transformations: {Some} ideas and examples},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--336},
     year = {2012},
     volume = {172},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a11/}
}
TY  - JOUR
AU  - O. Ragnisco
AU  - F. Zullo
TI  - Quantum Bäcklund transformations: Some ideas and examples
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 323
EP  - 336
VL  - 172
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a11/
LA  - ru
ID  - TMF_2012_172_2_a11
ER  - 
%0 Journal Article
%A O. Ragnisco
%A F. Zullo
%T Quantum Bäcklund transformations: Some ideas and examples
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 323-336
%V 172
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a11/
%G ru
%F TMF_2012_172_2_a11
O. Ragnisco; F. Zullo. Quantum Bäcklund transformations: Some ideas and examples. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 323-336. http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a11/

[1] A. I. Bobenko, B. Lorbeer, Yu. B. Suris, J. Math. Phys., 39:12 (1998), 6668–6683 | DOI | MR | Zbl

[2] A. I. Bobenko, Yu. B. Suris, Commun. Math. Phys., 204:1 (1999), 147–188 | DOI | MR | Zbl

[3] A. N. W. Hone, V. B. Kuznetsov, O. Ragnisco, J. Phys. A, 34:11 (1999), 2477–2490, arXiv: nlin/0007041 | DOI | MR

[4] F. W. Nijhoff, O. Ragnisco, V. B. Kuznetsov, Commun. Math. Phys., 176:3 (1996), 681–700, arXiv: hep-th/9412170 | DOI | MR | Zbl

[5] O. Ragnisco, Phys. Lett. A, 198:4 (1995), 295–305, arXiv: hep-th/9407043 | DOI | MR | Zbl

[6] O. Ragnisco, Yu. B. Suris, “On the $r$-matrix structure of the Neumann system and its discretizations”, Algebraic Aspects of Integrable Systems: in Memory of Irene Dorfman, Progress in Nonlinear Differential Equations and their Applications, 26, eds. A. S. Fokas, I. M. Gelfand, Birkhäuser, Boston, MA, 1996, 285–300 | MR | Zbl

[7] A. N. W. Hone, V. B. Kuznetsov, O. Ragnisco, J. Phys. A, 32:27 (1999), L299–L306 | DOI | MR | Zbl

[8] Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | MR | Zbl

[9] V. B. Kuznetsov, P. Vanhaecke, J. Geom. Phys., 44:1 (2002), 1–40, arXiv: nlin/0004003 | DOI | MR | Zbl

[10] V. B. Kuznetsov, E. K. Sklyanin, J. Phys. A, 31:9 (1998), 2241–2251 | DOI | MR | Zbl

[11] E. K. Sklyanin, “Bäcklund transformation and Baxters Q-operator”, Integrable Systems: From Classical to Quantum (Montréal, QC, July 26 – August 6, 1999), CRM Proceedings and Lecture Notes, 26, eds. J. Harnad, G. Sabidussi, P. Winternitz, AMS, Providence, RI, 2000, 227–250 | DOI | MR | Zbl

[12] E. K. Sklyanin, “Separation of variables – new trends”, Quantum Field Theory, Integrable Models and Beyond (Kyoto, February 14–17, 1994), Progress of Theoretical Physics. Supplement, 118, eds. T. Inami, R. Sasaki, Kyoto Univ., Kyoto, 1995, 35–60 | DOI | MR | Zbl

[13] A. Fasano, S. Marmi, Analytical Mechanics. An introduction, Oxford Univ. Press, Oxford, 2006 | MR | Zbl

[14] O. Ragnisco, F. Zullo, SIGMA, 7 (2011), 001, 13 pp. | DOI | MR | Zbl

[15] V. Pasquier, M. Gaudin, J. Phys. A, 25:20 (1992), 5243–5252 | DOI | MR | Zbl

[16] V. B. Kuznetsov, M. Salerno, E. K. Sklyanin, J. Phys. A, 33:1 (2000), 171–189 | DOI | MR | Zbl

[17] V. B. Kuznetsov, V. V. Mangazeev, E. K. Sklyanin, Indag. Math., 14:3–4 (2003), 451–482 | DOI | MR | Zbl

[18] P. M. Morse, H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953 | MR | Zbl

[19] V. B. Kuznetsov, E. K. Sklyanin, SIGMA, 3 (2007), 080, 17 pp. | DOI | MR | Zbl