Quantum B\"acklund transformations: Some ideas and examples
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 323-336
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose a mechanical (Hamiltonian) interpretation of the so-called spectrality property introduced by Sklyanin and Kuznetsov in the context of Bäcklund transformations (BTs) for finite-dimensional integrable systems. This property turns out to be deeply connected with the Hamilton–Jacobi separation of variables and can lead to the explicit integration of the corresponding model using the BTs. We show that once such a construction is given, we can interpret the Baxter $Q$-operator defining the quantum BTs as the Green's function or the propagator of the time-dependent Schrödinger equation for an interpolating Hamiltonian.
Keywords:
quantum Bäcklund transformation, spectrality property, integrable map, quantum propagator.
@article{TMF_2012_172_2_a11,
author = {O. Ragnisco and F. Zullo},
title = {Quantum {B\"acklund} transformations: {Some} ideas and examples},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--336},
publisher = {mathdoc},
volume = {172},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a11/}
}
O. Ragnisco; F. Zullo. Quantum B\"acklund transformations: Some ideas and examples. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 323-336. http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a11/