Envelope soliton resonances and Broer–Kaup-type non-Madelung fluids
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 308-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive an extended nonlinear dispersion for envelope soliton equations and also find generalized equations of the nonlinear Schrödinger (NLS) type associated with this dispersion. We show that space dilatations imply hyperbolic rotation of the pair of dual equations, the NLS and resonant NLS (RNLS) equations. For the RNLS equation, in addition to the Madelung fluid representation, we find an alternative non-Madelung fluid system in the form of a Broer–Kaup system. Using the bilinear form for the RNLS equation, we construct the soliton resonances for the Broer–Kaup system and find the corresponding integrals of motion and existence conditions for the soliton resonance and also a geometric interpretation in terms of a pseudo-Riemannian surface of constant curvature. This approach can be extended to construct a resonance version and the corresponding Broer–Kaup-type representation for any envelope soliton equation. As an example, we derive a new modified Broer–Kaup system from the modified NLS equation.
Keywords: soliton resonance, Madelung fluid, Broer–Kaup system, envelope soliton, resonant NLS.
@article{TMF_2012_172_2_a10,
     author = {O. K. Pashaev},
     title = {Envelope soliton resonances and {Broer{\textendash}Kaup-type} {non-Madelung} fluids},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {308--322},
     year = {2012},
     volume = {172},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a10/}
}
TY  - JOUR
AU  - O. K. Pashaev
TI  - Envelope soliton resonances and Broer–Kaup-type non-Madelung fluids
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 308
EP  - 322
VL  - 172
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a10/
LA  - ru
ID  - TMF_2012_172_2_a10
ER  - 
%0 Journal Article
%A O. K. Pashaev
%T Envelope soliton resonances and Broer–Kaup-type non-Madelung fluids
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 308-322
%V 172
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a10/
%G ru
%F TMF_2012_172_2_a10
O. K. Pashaev. Envelope soliton resonances and Broer–Kaup-type non-Madelung fluids. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 2, pp. 308-322. http://geodesic.mathdoc.fr/item/TMF_2012_172_2_a10/

[1] E. Madelung, Naturwiss., 14:45 (1926), 1004–1004 | DOI

[2] D. Bohm, Phys. Rev., 85:2 (1952), 166–179 ; 180–193 | DOI | MR | Zbl | DOI

[3] R. Feinman (1967), Feinmanovskie lektsii po fizike, v. 8, Kvantovaya mekhanika, Mir, M., 1967 | Zbl

[4] S. Jin, C. D. Levermore, D. W. McLaughlin, Commun. Pure Appl. Math., 52:5 (1999), 613–654 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] J.-H. Lee, C.-K. Lin, O. K. Pashaev, Chaos, Solitons Fractals, 19:1 (2004), 109–128 | DOI | MR | Zbl

[6] O. K. Pashaev, J.-H. Lee, Mod. Phys. Lett. A, 17:24 (2002), 1601–1619, arXiv: hep-th/9810139 | DOI | Zbl

[7] J. Matsukidaira, J. Satsuma, W. Strampp, Phys. Lett. A, 147:8–9 (1990), 467–471 | DOI | MR

[8] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR | Zbl

[9] F. Calogero, “$C$-integrable nonlinear partial differential equations”, Important Developments in Soliton Theory, Springer Series in Nonlinear Dynamics, eds. A. S. Fokas, V. E. Zakharov, Springer, Berlin, 1993, 33–37 | DOI | MR | Zbl

[10] J. D. Cole, Q. Appl. Math., 9 (1951), 225–236 | DOI | MR | Zbl

[11] E. Hopf, Commun. Pure Appl. Math., 3:3 (1950), 201–230 | DOI | MR | Zbl

[12] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 1, Mekhanika, 3 izd., Nauka, M., 1973 | MR | Zbl

[13] R. R. Parwani, O. K. Pashaev, J. Phys. A, 41:23 (2008), 235207, 18 pp. | DOI | MR | Zbl

[14] G. Auberson, P. C. Sabatier, J. Math. Phys., 35:8 (1994), 4028–4040 | DOI | MR | Zbl

[15] O. K. Pashaev, Nucl. Phys. B Proc. Suppl., 57:1–3 (1997), 338–341 | DOI | MR | Zbl

[16] O. K. Pashaev, J.-H. Lee, ANZIAM J., 44:1 (2002), 73–81 | DOI | MR | Zbl

[17] J.-H. Lee, O. K. Pashaev, C. Rogers, W. K. Schieff, J. Plasma Phys., 73:2 (2007), 257–272 | DOI

[18] B. A. Malomed, L. Stenflo, J. Phys. A, 24:19 (1991), L1149–L1153 | DOI | MR | Zbl

[19] O. K. Pashaev, J.-H. Lee, C. Rogers, J. Phys. A, 41:45 (2008), 452001, 9 pp. | DOI | MR | Zbl

[20] L. Brenig, J. Phys. A, 40:17 (2007), 4567–4584, arXiv: gr-qc/0610142 | DOI | MR | Zbl

[21] V. E. Zakharov, A. B. Shabat, ZhETF, 61:1 (1972), 118–134 | MR

[22] L. J. F. Broer, Appl. Sci. Res., 31:5 (1975), 377–395 | DOI | MR | Zbl

[23] D. J. Kaup, Progr. Theor. Phys., 54:2 (1975), 396–408 | DOI | MR | Zbl

[24] E. Schrödinger, Annal. Phys., 384:4 (1926), 361–376 | DOI

[25] R. Bellman, Dinamicheskoe programmirovanie, IL, M., 1960 | MR | Zbl

[26] L. Martina, O. K. Pashaev, G. Soliani, Class. Quantum Grav., 14:12 (1997), 3179–3186, arXiv: ; Phys. Rev. D, 58:8 (1998), 084025, 13 pp. hep-th/9710140 | DOI | MR | Zbl | DOI | MR

[27] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Studies Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl

[28] J.-H. Lee, O. K. Pashaev, “Bilinear representation for the modified nonlinear Schrödinger equations and their quantum potential deformations”, Nonlinear Physics: Theory and Experiment. II, Proceedings of the Workshop (Gallipoli, Italy, 27 June –6 July, 2002), eds. M. J. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari, World Scientific, Singapore, 2003, 79–82 | DOI | MR | Zbl