View of bunching and antibunching from the standpoint of classical
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 155-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The similarity between classical wave mechanics and quantum mechanics was noted in the works of De Broglie, Schrödinger, “late” Einstein, Lamb, Lande, Mandel, Marshall, Santos, Boyer, and many others. We present a new wave model of quantum mechanics, the so-called prequantum classical statistical field theory, in which an analogy between some quantum phenomena and the classical theory of random fields is investigated. Quantum systems are interpreted as symbolic representations of such fields (not only for photons, cf. Lande and Lamb, but even for massive particles). All quantum averages and correlations (including composite systems in entangled states) can be represented as averages and correlations for classical random fields. We use the prequantum classical statistical field theory to obtain bunching and antibunching in the framework of classical signal theory. We note that antibunching at least is typically considered an essentially quantum (nonclassical) phenomenon.
Keywords: quantum mechanics as emergent phenomenon, classical random field, quantum correlation, classical correlation, bunching, antibunching.
@article{TMF_2012_172_1_a9,
     author = {A. Yu. Khrennikov},
     title = {View of bunching and antibunching from the~standpoint of classical},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {155--176},
     year = {2012},
     volume = {172},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a9/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - View of bunching and antibunching from the standpoint of classical
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 155
EP  - 176
VL  - 172
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a9/
LA  - ru
ID  - TMF_2012_172_1_a9
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T View of bunching and antibunching from the standpoint of classical
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 155-176
%V 172
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a9/
%G ru
%F TMF_2012_172_1_a9
A. Yu. Khrennikov. View of bunching and antibunching from the standpoint of classical. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 155-176. http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a9/

[1] A. Plotnitsky, J. Modern Optics, 54:16–17 (2007), 2393–2402 | DOI

[2] A. Plotnitsky, Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature of Quantum-Theoretical Thinking, Fundamental Theories of Physics, 161, Springer, Berlin, New York, NY, 2009 | MR | Zbl

[3] W. H. Louisell, Quantum Statistical Properties of Radiation, Reprint of the 1973 edition, Wiley Sons, New York, 1990 | MR | Zbl

[4] L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, Cambridge Univ. Press, Cambridge, 1995

[5] M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, 1997

[6] L. de la Pea, A. Cetto, The Quantum Dice: an Introduction to Stochastic Electrodynamics, Fundamental Theories of Physics, 75, Kluwer, Dordrecht, 1996 | MR

[7] A. Casado, T. Marshall, E. Santos, J. Opt. Soc. Am. B, 14:3 (1997), 494–502 | DOI

[8] G. Brida, M. Genovese, M. Gramegna, C. Novero, E. Predazzi, Phys. Lett. A, 299:2–3 (2002), 121–124, arXiv: quant-ph/0203048 | DOI | MR | Zbl

[9] T. H. Boyer, “A brief survey of stochastic electrodynamics”, Foundations of Radiation Theory and Quantum Electrodynamics, ed. A. Barut, Plenum, New York, London, 1980, 49–63 | DOI | MR

[10] D. C. Cole, A. Rueda, K. Danley, Phys. Rev. A, 63:5 (2001), 054101, 2 pp. | DOI

[11] Th. M. Nieuwenhuizen, “Classical phase space density for the relativistic hydrogen atom”, Quantum Theory: Reconsideration of Foundations, Proceedings of the 3rd International Conference (Växjö, Sweden, June 6–11, 2005), AIP Conference Proceedings, 810, eds. G. Adenier, A. Yu. Khrennikov, Th. M. Nieuwenhuizen, AIP, Melville, NY, 198–210, arXiv: quant-ph/0511144 | DOI | MR | Zbl

[12] E. Nelson, Quantum Fluctuation, Princeton Univ. Press, Princeton, NJ, 1985 | MR | Zbl

[13] M. Davidson, J. Math. Phys., 20:9 (1979) | DOI | MR

[14] M. Davidson, “Stochastic models of quantum mechanics – a perspective”, Foundations of Probability and Physics – 4, Proceedings of the International Conference (Växjö, Sweden, June 4–9, 2006), AIP Conference Proceedings, 889, eds. G. Adenier, A. Yu. Khrennikov, C. A. Fuchs, AIP, Melville, NY, 2007, 106–119, arXiv: quant-ph/0610046 | DOI | MR

[15] A. Bach, J. Math. Phys., 14:1 (1981), 125–132 | DOI | MR

[16] A. Bach, Phys. Lett. A, 73:4 (1979), 287–288 | DOI | MR

[17] V. I. Man'ko, J. Russian Laser Research, 17:6 (1996), 579–584 | DOI

[18] V. I. Man'ko, E. V. Shchukin, J. Russian Laser Research, 22:6 (2001), 545–560 | DOI

[19] Yu. M. Belousov, V. I. Manko, Matritsa plotnosti. Predstavleniya i primeneniya v statisticheskoi fizike, MFTI, M., 2004

[20] M. A. Manko, V. I. Manko, R. V. Mendes, J. Russian Laser Research, 27:6 (2006), 507–532 | DOI

[21] S. De Nicola, R. Fedele, M. A. Manko, V. I. Manko, J. Russian Laser Research, 25:1 (2004), 1–29 | DOI | MR

[22] G. 't Hooft, Quantum mechanics and determinism, arXiv: hep-th/0105105 | MR

[23] G. 't Hooft, The free-will postulate in quantum mechanics, arXiv: quant-ph/0701097

[24] H.-T. Elze, J. Phys. Conf. Ser., 174:1 (2009), 012009, 10 pp., arXiv: 0906.1101 | DOI

[25] H.-T. Elze, J. Phys. Conf. Ser., 67:1 (2007), 012016, 11 pp., arXiv: 0704.2559 | DOI

[26] V. V. Kisil, Europhys. Lett., 72:6 (2005), 873–879, arXiv: quant-ph/0506122 | DOI | MR

[27] A. Einshtein, L. Infeld, Evolyutsiya fiziki. Razvitie idei ot pervonachalnykh ponyatii do teorii otnositelnosti i kvantov, Nauka, M., 1965 | Zbl

[28] A. Khrennikov, J. Phys. A, 38:41 (2005), 9051–9073, arXiv: quant-ph/0505228 | DOI | MR | Zbl

[29] A. Khrennikov, Found. Phys. Lett., 18:7 (2005), 637–650 | DOI | MR | Zbl

[30] A. Khrennikov, Phys. Lett. A, 357:3 (2006), 171–176, arXiv: quant-ph/0602210 | DOI | MR | Zbl

[31] A. Khrennikov, Found. Phys. Lett., 19:4 (2006), 299–319 | DOI | MR | Zbl

[32] A. Khrennikov, Nuovo Cimento B, 121:5 (2006), 505–521, arXiv: hep-th/0604163 | DOI | MR

[33] A. Khrennikov, Physica E, 42:3 (2010), 287–292 | DOI

[34] A. Yu. Khrennikov, TMF, 164:3 (2010), 386–393 | DOI | Zbl

[35] A. Khrennikov, Nuovo Cimento B, 121:9 (2006), 1005–1021 | DOI

[36] M. Ohya, N. Watanabe, Japan. J. Appl. Math., 3:1 (1986), 197–206 | DOI | MR | Zbl

[37] A. Khrennikov, J. Modern Opt., 55:14 (2008), 2257–2267 | DOI | Zbl

[38] A. Khrennikov, Europhys. Lett., 88:4 (2009), 40005, 6 pp. | DOI

[39] A. Khrennikov, Europhys. Lett., 90:4 (2010), 40004 | DOI

[40] A. Khrennikov, J. Russian Laser Research, 31:2 (2010), 191–200 | DOI

[41] I. V. Volovich, Photon antibunching, sub-Poisson statistics and Cauchy–Bunyakovsky and Bell's inequalities, arXiv: 1106.1892

[42] I. Volovich, “Quantum cryptography in space and Bell's theorem”, Foundations of Probability and Physics, Proceedings of the conference (Växjö, November 25 – December 1, 2000), Quantum Probability and White Noise Analysis, 13, ed. A. Khrennikov, World Scientific, River Edge, NJ, 2001, 364–372 | MR

[43] M. Ohya, I. Volovich, Mathematical Foundations of Quantum Information and Computation and its Applications to Nano- and Bio-systems, Springer, New York, 2011 | MR | Zbl

[44] A. Khrennikov, Contextual Approach to Quantum Formalism, Fundamental Theories of Physics, 160, Springer, Dordrecht, 2009 | MR | Zbl

[45] A. Khrennikov, Born's rule from measurements of classical signals by threshold detectors which are properly calibrated, arXiv: 1105.4269

[46] A. Khrennikov, M. Ohya, N. Watanabe, J. Russian Laser Research, 31:5 (2010), 462–468 | DOI

[47] Yu. I. Ozhigov, Mikroelektronika, 35:1 (2006), 44–56 | MR

[48] Y. I. Ozhigov, Dynamical diffusion as the approximation of one quantum particle dynamics, arXiv: quant-ph/0702237

[49] Y. I. Ozhigov, Simulation of quantum dynamics via classical collective behavior, arXiv: quant-ph/0602155

[50] Dzh. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR | Zbl