Rolling in the Higgs model and elliptic functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 138-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic methods in nonlinear dynamics such as, for example, the Krylov–Bogoliubov averaging method and the KAM theory are commonly used to improve perturbation theory results in the regime of small oscillations. But for a series of problems in nonlinear dynamics, in particular, for the Higgs equation in field theory, not only the small-oscillation regime but also the rolling regime is of interest. Both slow- and fast-rolling regimes are important in the Friedmann cosmology. We present an asymptotic method for solving the Higgs equation in the rolling regime. We show that to improve the perturbation theory in the rolling regime, expanding a solution known in terms of elliptic functions not in trigonometric functions (as with the averaging method in the small-oscillation regime) but in hyperbolic functions turns out to be effective. We estimate the accuracy of the second approximation. We also investigate the Higgs equation with damping.
Keywords: asymptotic methods in nonlinear dynamics, rolling, Higgs model.
@article{TMF_2012_172_1_a8,
     author = {I. Ya. Aref'eva and I. V. Volovich and E. V. Piskovskiy},
     title = {Rolling in {the~Higgs} model and elliptic functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {138--154},
     year = {2012},
     volume = {172},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a8/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - I. V. Volovich
AU  - E. V. Piskovskiy
TI  - Rolling in the Higgs model and elliptic functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 138
EP  - 154
VL  - 172
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a8/
LA  - ru
ID  - TMF_2012_172_1_a8
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A I. V. Volovich
%A E. V. Piskovskiy
%T Rolling in the Higgs model and elliptic functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 138-154
%V 172
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a8/
%G ru
%F TMF_2012_172_1_a8
I. Ya. Aref'eva; I. V. Volovich; E. V. Piskovskiy. Rolling in the Higgs model and elliptic functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 138-154. http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a8/

[1] N. M. Krylov, N. N. Bogolyubov, Vvedenie v nelineinuyu mekhaniku, Izd-vo AN USSR, Kiev, 1937 | Zbl

[2] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 2005 | MR | Zbl

[3] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985 | MR | Zbl

[4] V. V. Kozlov, S. D. Furta, Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2009 | MR

[5] V. A. Rubakov, Klassicheskie kalibrovochnye polya, URSS, M., 1999 | MR | Zbl

[6] V. F. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[7] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi. Kosmologicheskie vozmuscheniya. Inflyatsionnaya teoriya, IYaI RAN, M., 2009 | Zbl

[8] I. Ya. Aref'eva, I. V. Volovich, JHEP, 8 (2011), 102, 32 pp., arXiv: 1103.0273 | DOI | Zbl

[9] I. Ya. Aref'eva, N. V. Bulatov, R. V. Gorbachev, FRW cosmology with non-positively defined Higgs potentials, arXiv: 1112.5951

[10] I. V. Volovich, TMF, 164:3 (2010), 354–362 | DOI | Zbl

[11] E. V. Piskovskiy, I. V. Volovich, “On the correspondence between Newtonian and functional mechanics”, Quantum Bio-Informatics IV: From Quantum Information to Bio-informatics (Tokyo, Japan, March 10–13, 2010), Quantum Probability and White Noise Analysis, 28, eds. L. Accardi, W. Freudenberg, M. Ohaya, World Scientific, Hackensack, NJ, 2011, 363–372 | DOI | MR | Zbl

[12] A. M. Zhuravskii, Spravochnik po ellipticheskim funktsiyam, Nauka, M., 1941

[13] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, M., Nauka, 1970 | MR | Zbl

[14] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR