Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian
Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 122-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We determine the rate with which finitely multiple approximations in the Feynman formula converge to the exact expression for the equilibrium density operator of a harmonic oscillator in the linear $\tau$-quantization. We obtain an explicit analytic expression for a finitely multiple approximation of the equilibrium density operator and the related Wigner function. We show that in the class of $\tau$-quantizations, the equilibrium Wigner function of a harmonic oscillator is positive definite only in the case of the Weyl quantization.
Keywords: finitely multiple approximation, Chernoff theorem, linear quantization, harmonic oscillator, Wigner function.
Mots-clés : Feynman formula
@article{TMF_2012_172_1_a7,
     author = {Yu. N. Orlov and V. Zh. Sakbaev and O. G. Smolyanov},
     title = {Rate of convergence of {Feynman} approximations of semigroups generated by the~oscillator {Hamiltonian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {122--137},
     year = {2012},
     volume = {172},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a7/}
}
TY  - JOUR
AU  - Yu. N. Orlov
AU  - V. Zh. Sakbaev
AU  - O. G. Smolyanov
TI  - Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2012
SP  - 122
EP  - 137
VL  - 172
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a7/
LA  - ru
ID  - TMF_2012_172_1_a7
ER  - 
%0 Journal Article
%A Yu. N. Orlov
%A V. Zh. Sakbaev
%A O. G. Smolyanov
%T Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2012
%P 122-137
%V 172
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a7/
%G ru
%F TMF_2012_172_1_a7
Yu. N. Orlov; V. Zh. Sakbaev; O. G. Smolyanov. Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 172 (2012) no. 1, pp. 122-137. http://geodesic.mathdoc.fr/item/TMF_2012_172_1_a7/

[1] P. R. Chernoff, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl

[2] R. P. Feynman, Rev. Modern Phys., 20:2 (1948), 367–387 | DOI | MR

[3] R. P. Feynman, Phys. Rev., 84:1 (1951), 108–128 | DOI | MR | Zbl

[4] O. G. Smolyanov, A. G. Tokarev, A. Truman, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl

[5] E. Nelson, J. Math. Phys., 5:3 (1964), 332–343 | DOI | MR | Zbl

[6] N. Jacob, Pseudo Differential Operators and Markov Processes, Fourier Analysis and Semigroups, v. 1, Imperial College Press, London, 2001 | MR | Zbl

[7] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR | Zbl

[8] P. Cartier, C. De Witt-Morett, Functional Integration: Action and Symmetries, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2006 | MR | Zbl

[9] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, Izd-vo MGU, M., 1990 | MR | Zbl

[10] S. A. Albeverio, R. J. Høegh-Krohn, S. Mazzucchi, Mathematical Theory of Feynman Path Integrals, Lecture Notes in Mathematics, 523, Springer, Berlin, 2008 | MR | Zbl

[11] M. Kats, Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965 | Zbl

[12] A. D. Venttsel, M. I. Freidlin, Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR | Zbl

[13] E. B. Dynkin, Markovskie protsessy, Fizmatgiz, M., 1963 | MR | Zbl

[14] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR | Zbl

[15] F. A. Berezin, TMF, 6:2 (1971), 194–212 | DOI | MR | Zbl

[16] O. G. Smolyanov, Kh. Vaitszekker, Dokl. RAN, 426:2 (2009), 162–165 | MR | Zbl

[17] M. Gadelya, O. G. Smolyanov, Dokl. RAN, 418:6 (2008), 727–730 | MR | Zbl

[18] Ya. A. Butko, O. G. Smolyanov, R. L. Shilling, Dokl. RAN, 434:1 (2010), 7–11 | MR | Zbl

[19] V. Zh. Sakbaev, O. G. Smolyanov, Dokl. RAN, 433:3 (2010), 314–317 | MR | Zbl

[20] D. S. Tolstyga, Rus. J. Math. Phys., 18:1 (2011), 122–131 | DOI | MR | Zbl

[21] Yu. N. Orlov, Osnovy kvantovaniya vyrozhdennykh dinamicheskikh sistem, MFTI, M., 2004

[22] Ya. A. Butko, O. G. Smolyanov, Sovremennye problemy matematiki i mekhaniki, 6:1 (2011), 61–75

[23] Ya. A. Butko, M. Grotkhaus, O. G. Smolyanov, Dokl. RAN, 421:6 (2008), 727–732 | MR | Zbl

[24] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl